Answer:
189.2 KJ
Explanation:
Data Given
wavelength of the light = 632.8 nm
Convert nm to m
1 nm = 1 x 10⁻⁹
632.8 nm = 632.8 x 1 x 10⁻⁹ = 6.328 x 10⁻⁷m
Energy of 1 mole of photon = ?
Solution
Formula used
E = hc/λ
where
E = energy of photon
h = Planck's Constant
Planck's Constant = 6.626 x 10⁻³⁴ Js
c = speed of light
speed of light = 3 × 10⁸ ms⁻¹
λ = wavelength of light
Put values in above equation
E = hc/λ
E = 6.626 x 10⁻³⁴ Js ( 3 × 10⁸ ms⁻¹ / 6.328 x 10⁻⁷m)
E = 6.626 x 10⁻³⁴ Js (4.741 x 10¹⁴s⁻¹)
E = 3.141 x 10⁻¹⁹J
3.141 x 10⁻¹⁹J is energy for one photon
Now we have to find energy of 1 mole of photon
As we know that
1 mole consists of 6.022 x10²³ numbers of photons
So,
Energy for one mole photons = 3.141 x 10⁻¹⁹J x 6.022 x10²³
Energy for one mole photons = 1.89 x 10⁵ J
Now convert J to KJ
1000 J = 1 KJ
1.89 x 10⁵ J = 1.89 x 10⁵ /1000 = 189.2 KJ
So,
energy of one mole of photons = 189.2 KJ
Answer:
The correct option here is the first option
Explanation:
Covalent bond is the bond that involves the sharing of electrons between the participating atoms. The electrons (in the outermost shells of the atoms) that are involved this sharing are called the "shared pair" while those electrons (in the outermost shells of the atoms) that are not involved in this sharing are called the "lone pair". Bonding eventually leads to each of the participating atoms achieving it's octet configuration.
Carbon will bind covalently with fluorine (to form carbon tetrafluoride) with each of the electrons on the outermost shell of the carbon been shared covalently with fluorine atoms (that also requires just one electron to achieve it's octet configuration). Thus, at the end, we would have one carbon atom being covalently linked to four flourine atoms.
Mechanical I believe because this are things that move and don’t move so that would mean that it would be mechanical since mechanical means movement
Answer:
A
Explanation:
With chemical reactions, there are various factors that affect the rate of the reaction. One of these is temperature.
When you raise the temperature, the reaction will move faster. Why? Temperature is directly correlated with the kinetic energy (basically, the energy that makes the particles move). Higher temperatures mean higher kinetic energies. Particles with higher kinetic energies move faster, which makes them more likely to collide. When collisions occur more frequently, the reaction follows through more quickly.
Thus, when Julissa warms the solutions, she will see that bubbling and white solid formation (the products of the reaction) occus faster. So, the answer is A.
Hope this helps!