Because it requires more energy to create a neutron from a proton than it does to create a proton from a neutron, protons were formed more frequently than neutrons in the early universe. The correct answer is option b.
To find the answer, we need to know more about the early universe.
<h3>How the formation of proton over neutrons was favored in the early universe?</h3>
- A neutron is produced with greater energy than a proton.
- However, later on, some of the protons were changed into neutrons.
- Contrary to some claims, the proton is a stable particle that never decays, but the neutron is unstable outside of the nucleus and decays with a half life of around 10.5 minutes.
- However, very few would have had time to decay on the timeline you mention in your question.
- Every matter particle should have been accompanied by an antimatter particle, and every proton, neutron, and electron, by an anti-neutron and a positron, respectively.
- Where did all the antimatter go is the great mystery. There have been a few attempts to explain this, but they have failed.
Thus, we can conclude that, the correct answer is option b.
Learn more about the early universe here:
brainly.com/question/28130096
#SPJ1
Regular mint dissolves faster because it has sugar. And sugar dissolves faster in water.
The molar heat of fusion for iron with a mass of 200.0g releases 9,840 cal when it freezes at its freezing point is 2,747.7 cal/mol.
<h3>How to calculate molar heat of fusion?</h3>
The heat of fusion of a substance can be calculated by using the following formula:
Q = m∆H
Where:
- Q = quantity of heat
- m = mass
- ∆H = change in temperature of fusion
However, the quantity of heat has been given as 9840calories. The molar heat of fusion of iron can be calculated by dividing the heat of fusion by the number of moles of iron.
Moles of iron = mass ÷ molar mass
moles = 200g ÷ 55.8g/mol
moles = 3.58moles
molar heat of fusion = 9840 cal ÷ 3.58mol
molar heat of fusion = 2748.6 cal/mol
Therefore, the molar heat of fusion for iron with a mass of 200.0g releases 9,840 cal when it freezes at its freezing point is 2,747.7 cal/mol.
Learn more about molar heat of fusion at: brainly.com/question/8263730
Answer:
H₂O
Explanation:
Two molecules of Hydrogen and one molecules of Oxygen, when mixed, create H₂O, or water. There is no scientific name for H₂O due to it's common name. It is just refereed to as "water" or H₂O.