Answer:
The gas argon does not reach a state of vibrational excitation when infrared radiation strikes this gas.
Explanation:
The dry atmosphere is composed almost entirely of nitrogen (in a volumetric mixing ratio of 78.1%) and oxygen (20.9%), plus a series of oligogases such as argon (0.93%), helium and gases of greenhouse effect such as carbon dioxide (0.035%) and ozone. In addition, the atmosphere contains water vapor in very variable amounts (about 1%) and aerosols.
Greenhouse gases or greenhouse gases are the gaseous components of the atmosphere, both natural and anthropogenic, that absorb and emit radiation at certain wavelengths of the infrared radiation spectrum emitted by the Earth's surface, the atmosphere and clouds . In the Earth's atmosphere, the main greenhouse gases (GHG) are water vapor (H2O), carbon dioxide (CO2), nitrous oxide (N2O), methane (CH4) and ozone (O3 ). There is also in the atmosphere a series of greenhouse gases (GHG) created entirely by humans, such as halocarbons (compounds containing chlorine, bromine or fluorine and carbon, these compounds can act as potent greenhouse gases in the atmosphere and they are also one of the causes of the depletion of the ozone layer in the atmosphere) regulated by the Montreal Protocol. In addition to CO2, N2O and CH4, the Kyoto Protocol sets standards regarding sulfur hexafluoride (SF6), hydrofluorocarbons (HFCs) and perfluorocarbons (PFCs).
The difference between argon and greenhouse gases such as CO2 is that the individual atoms in the argon do not have free bonds and therefore do not vibrate. As a consequence, it does not reach a state of vibrational excitation when infrared radiation strikes this gas.
Using coupons seems like an old-fashioned, time-consuming way to save a few cents on the products you buy at the grocery store. After all, most coupons don't usually have a face value of more than $1 and, quite often, they're worth far less. But done properly, couponing can save you thousands of dollars every year.
Answer:
The process of dissolving is exothermic when more energy is released when water molecules “bond” to the solute than is used to pull the solute apart. Because more energy is released than is used, the molecules of the solution move faster, making the temperature increase.
Project the image Endothermic Dissolving.
The process of dissolving is endothermic when less energy is released when water molecules “bond” to the solute than is used to pull the solute apart. Because less energy is released than is used, the molecules of the solution move more slowly, making the temperature decrease.
<u>Answer:</u> The longest wavelength of light is 656.5 nm
<u>Explanation:</u>
For the longest wavelength, the transition should be from n to n+1, where: n = lower energy level
To calculate the wavelength of light, we use Rydberg's Equation:

Where,
= Wavelength of radiation
= Rydberg's Constant = 
= Higher energy level = 
= Lower energy level = 2 (Balmer series)
Putting the values in above equation, we get:

Converting this into nanometers, we use the conversion factor:

So, 
Hence, the longest wavelength of light is 656.5 nm
The percentage yield of the new production technique is 82.8%
<h3>What is the percentage yield?</h3>
Production is the procedure by which finished products are obtained form the raw materials. The production process involves the passing of raw materials through a certain procedure that involves the use of certain machines and equipment to give us the required products.
We are told in the question that there are three shifts;
Shift 1 produces 4562 grams
Shift 2 produces 5783 grams
Shift 3 produces 5247 grams
Average production from the three shifts = 4562 grams + 5783 grams + 5247 grams/3 = 5197 grams
The theoretical average yield is = 7000 grams + 7000 grams + 7000 grams/3 = 7000 grams
Now the percentage yield = actual yield/ theoretical yield * 100/1
percentage yield = 5197 grams/7000 grams * 100/1
percentage yield = 82.8%
Learn more about percentage yield :brainly.com/question/27492865
#SPJ1