Answer: The brain
Explanation:
The brain is an ideal reservoir for our bodies. That is the main one.
The intensity of an electromagnetic wave increases with the field strength.
-- Mr. Galonski looks at himself in the mirror while he shaves in the morning, using visible light.
-- On his way to work, he listens to music and news, taking advantage of all the radio waves around.
-- While walking from his car to his office, he takes his jacket off and rolls up his sleeves, so his arms can soak up some ultraviolet from the sun, and get a little bit of color.
-- Mister Galonski is actually DOCTOR Galonski DDS ... a dentist. He uses a machine that produces X-rays, to take pictures of his patients' teeth and jaws. He glues the pictures into a big scrap-book that he keeps on the coffee table in his living room.
Answer:
A
Explanation:
The figure shows the electric field produced by a spherical charge distribution - this is a radial field, whose strength decreases as the inverse of the square of the distance from the centre of the charge:

More precisely, the strength of the field at a distance r from the centre of the sphere is

where k is the Coulomb's constant and Q is the charge on the sphere.
From the equation, we see that the field strength decreases as we move away from the sphere: therefore, the strength is maximum for the point closest to the sphere, which is point A.
This can also be seen from the density of field lines: in fact, the closer the field lines, the stronger the field. Point A is the point where the lines have highest density, therefore it is also the point where the field is strongest.
Answer:
a) 24
b) 3.3 sec
c) 29.8 m/s
d) 48.85 m
Explanation:
a)
α = angular acceleration = - 28.4 rad/s²
r = radius of the tire = 0.32 m
w₀ = initial angular velocity = 93 rad/s
w = final angular velocity = 0 rad/s
θ = angular displacement
Using the equation
w² = w₀² + 2αθ
0² = 93² + 2 (- 28.4) θ
θ = 152.3 rad
n = number of revolutions
Number of revolutions are given as
b)
t = time taken to stop
using the equation
w = w₀ + αt
0 = 93 + (- 28.4) t
t = 3.3 sec
c)
v₀ = initial velocity of the car
initial velocity of the car is given as
v₀ = r w₀ = (0.32) (93) = 29.8 m/s
d)
v = final velocity = 0 m/s
a = linear acceleration = rα = (0.32) (- 28.4) = - 9.09 m/s²
d = distance traveled by car before stopping
Using the equation
v² = v₀² + 2 a d
0² = 29.8² + 2 (- 9.09) d
d = 48.85 m