In order to get HgO you would need 2Hg+1O2=2HgO. Since oxygen is diatomic you need two when it stands alone causing you to need two mercuries to balance out the reactants and the product I hope this helps
The filament holds up the anther so that pollination and fertilization can occur!
Explanation:
Apply the mass of balance as follows.
Rate of accumulation of water within the tank = rate of mass of water entering the tank - rate of mass of water releasing from the tank



[/tex]\frac{dh}{dt} + \frac{0.01}{0.01}h[/tex] = 

+ h = 1
= 1 - h
= dt
= t + C
Given at t = 0 and V = 0
= 0
or, h = 0
-ln(1 - h) = t + C
Initial condition is -ln(1) = 0 + C
C = 0
So, -ln(1 - h) = t
or, t =
........... (1)
(a) Using equation (1) calculate time to fill the tank up to 0.6 meter from the bottom as follows.
t =
t =
= 
= 0.916 seconds
(b) As maximum height of water level in the tank is achieved at steady state that is, t =
.
1 - h = exp (-t)
1 - h = 0
h = 1
Hence, we can conclude that the tank cannot be filled up to 2 meters as maximum height achieved is 1 meter.
Answer:
The concentration of the copper sulfate solution is 83 mM.
Explanation:
The absorbance of a copper sulfate solution can be calculated using Beer-Lambert Law:
A = ε . c . <em>l</em>
where
ε is the extinction coefficient of copper sulfate (ε = 12 M⁻¹.cm⁻¹)
c is its molar concentration (what we are looking for)
l is the pathlength (0.50 cm)
We can use this expression to find the molarity of this solution:

The answer///////////b, 5 orbits