Answer:
Orbitals
Shells
Energy Levels
Explanation:
Elements in the same period will have the same energy levels which is the same as orbitals and shells.
- The period of an element indicates the energy level in an atom.
- Elements in period 1 will have one energy level or shell or orbitals.
- Down a group this is not the case.
- The energy level increases from top to bottom.
- As we go down the group, we are transiting from one period to another.
The bottom of group 1. Francium (or Fr) is the element with the greatest metallic properties.
Francium is not a naturally-occurring element, however. It is man-made. There is an isotope of francium that exists naturally, but it's half life is so short that it decays almost instantly into a different element.
The naturally-occurring element with the highest metallic properties is cesium (or Cs), located right above francium.
Metallic characteristics decrease as you move from left to right on the periodic table.
Answer:

Explanation:
The ideal gas law equation is an equation that relates some of the quantities that describe a gas: pressure, volume and temperature.
The equation is:

where
p is the pressure of the gas
V is the volume of the gas
n is the number of moles of the gas
R is the gas constant
T is the absolute temperature of the gas (must be expressed in Kelvin)
Here we want to solve the equation isolating p, the pressure of the gas.
We can do that simply by dividing both terms by the volume, V. We find:

So, we see that:
- The pressure is directly proportional to the temperature of the gas
- The pressure is inversely proportional to the volume of the gas
Carbohydrates,Lipids,Proteins,Nucleic acids,<span>Organic Compounds</span>
<span>As the pressure is increased the solubility of the sugar and carbon dioxide is increased. The pressure of combination leaves little to no separation. There would be no discernable difference between the ingredients used to make the saturated solution.</span>