The electric field between plates is 4000V/m.
An electric field (sometimes E-field) is the physical field that surrounds electrically charged particles and exerts force on all other charged particles in the field, either attracting or repelling them. It also refers to the physical field for a system of charged particles.
The value of the electric field has dimensions of force per unit charge. In the metre-kilogram-second and SI systems, the appropriate units are newtons per coulomb, equivalent to volts per metre.
The voltage between points A and B is
V=E.d
E =V/d (uniform E- field only)
where d is the distance from A to B, or the distance between the plates.
Given:
distance d = 3 cm
voltage V = 120 V
Electric field E = V/d
E = 120 V / 3cm
E = 40 V / 1 cm [ 1 cm = 1/100 m ]
E = 4000 V/m.
Learn more about Electric field here:
brainly.com/question/8971780
#SPJ4
The gravitational force between the objects A. It would increase.
Explanation:
The magnitude of the gravitational force between two objects is given by:

where
G is the gravitational constant
are the masses of the two objects
r is the separation between the objects
In this problem, we are told that one of the object (the one on the right) gains mass: this means that, for instance, the value of
increases. We can see from the equation that the gravitational force is directly proportional to the masses: therefore, if one of the masses increases (while the distance between the two objects remains constant), it means that the force also increases.
Therefore, the correct answer is
A. It would increase.
Learn more about gravitational force:
brainly.com/question/1724648
brainly.com/question/12785992
#LearnwithBrainly
Answer:
Explanation:
b) Gravity reduces the initial upward velocity to zero in a time of
t = v/g = 40/10 = 4 s
a) h = v₀t + ½gt² = 40(4) + ½(-10)4² = 80 m
or
v² = u² + 2as
h = (0² - 40²) / 2(-10) = 80 m
The true scientific way is the last: using the water displacement method
Answer:
60 kg m/s
Explanation:
Let
be the acceleration of the object.
As the acceleration of the object is constant, so

Given that applied force, F=6.00 N,
From Newton's second law, we have
,
[from equation (i)]


[given that time, t=10 s and F=6 N]

Here mv is the final momentum of the object and mu is the initial momentum of the object.
So, the change in the momentum of the object is mv-mu.
Hence, the change in the momentum of the object is 60 kg m/s.