Answer:
Vertical distance= 3.3803ft
Explanation:
First with the speed of the ball and the distance traveled horizontally we can determine the flight time to reach the plate:
Velocity= (90 mi/h) × (1 mile/5280ft) = 475200ft/h
Distance= Velocity × time⇒ time= 60.5ft / (475200ft/h) = 0.00012731h
time= 0.00012731h × (3600s/h)= 0.458316s
With this time we can determine the distance traveled vertically taking into account that its initial vertical velocity is zero and its acceleration is that of gravity, 9.81m/s²:
Vertical distance= (1/2) × 9.81 (m/s²) × (0.458316s)²=1.0303m
Vertical distance= 1.0303m × (1ft/0.3048m) = 3.3803ft
This is the vertical distance traveled by the ball from the time it is thrown by the pitcher until it reaches the plate, regardless of air resistance.
A transverse wave. A wave is a disturbance that transmits energy from one place to another by the particles of the medium.
Answer:
According to newton's second law of motionF=ma Data:-F=3200kgm/sec² or N ,a=2m/sec² ,m=? solution :-F=ma here we have to find m so m=F/a ,m=3200/2=1600kg
Answer:
Personally I don't believe aliens exist maybe they do who knows but i don't think so.
Explanation:
Explanation:
Given that,
Wavelength of the photon, 
Work function of the metal, 
We need to find the maximum kinetic energy of the ejected electrons. It can be calculated using Einstein's photoelectric equation as :






or

So, the maximum kinetic energy of the ejected electrons is 3 ev. Hence, this is the required solution.