Following chemical reaction is involved upon titration of Ca(OH)2 with HCl,
Ca(OH)2 + 2HCl ↔ CaCL2 + 2H2O
Above is an example of acid-base titration to generate salt and water. Here, H+ ions of acid (HCl) combines with OH- (ions) of base [Ca(OH)2] to generated H2O
Given,
concentration of HCl = 0.0199 M
Total volume of HCl consumed during titration = 16.08 mL = 16.08 X 10^(-3) L
∴, number of moles of H+ consumed = Molarity X Vol. of HCl (in L)
= 0.0199 X 16.08 X 10^(-3)
= 3.1999 X 10^-4 mol
Thus, total number of moles of [OH-] ions present initial = 3.1999 X 10-4 mol
So, initial conc. [OH-] ion = ![\frac{number of moles of [OH-]}{volume of solution (L)}](https://tex.z-dn.net/?f=%20%5Cfrac%7Bnumber%20of%20moles%20of%20%5BOH-%5D%7D%7Bvolume%20of%20solution%20%28L%29%7D%20)
=

= 0.03199 M
Ionic bonds are formed when one of the two atoms that are reacting has excess electrons and transfer the electrons to the atom that is deficient in electrons. During the formation of the ionic bond, one of the reacting atoms will donate electrons and form positive ion.
Answer:
Explanation:
By definition, <em>half neutralization</em> is the point at which half of the acid has been neutralized.
The neutralization reaction that you are studying is the acid-base reaction:
- HCl (aq) + NaOH (aq) → NaCl(aq) + H₂O (aq)
Then, since the starting molarity of the acid (HCl) is 0.2 M, you just need to find half of that concentration:
- Half molarity = M / 2 = 0.2 M / 2 = 0.1 M
So, the answer is the first choice: a. 0.1 M.
Answer:
Kinetic energy is the energy that an object has because of its motion. The molecules in a substance have a range of kinetic energies because they don't all move at the same speed. As a substance absorbs heat the particles move faster so the average kinetic energy and therefore the temperature increases.
It's keeps its size and shape because against the outward pressure of fusion energy by the force of gravity