Answer:
D. It has a low resistance and allows charges to move freely.
Explanation:
The high conductivity of copper allow charges to move freely without the need of too much force. The conductivity decreases with increase in resistance. Low resistance also means less heating of the conductors. This property of copper makes it ideal for use in the manufacture of electric cables and conductors for various gadgets.
The correct answer is Electromagnetic spectrum, A,B and D are components of electromagnetic spectrum.
Answer:
* Experiment with a higher range of materials
* Use a galvanometer.
* Vary in number of coils of the electromagnet
Explanation:
This is an experiment of electricity and magnetism, in general the best way to improve the results are:
* Experiment with a higher range of materials
allowing to know the scope of the initial assumptions
* Use a galvanometer.
The more accurate the readings the error of the derived quantities is the less which will improve the precision of the experiment.
* Vary in number of coils of the electromagnet
Since it allows to have greater magnetic fields and therefore expand the range of measurements
Answer:
6400 m
Explanation:
You need to use the bulk modulus, K:
K = ρ dP/dρ
where ρ is density and P is pressure
Since ρ is changing by very little, we can say:
K ≈ ρ ΔP/Δρ
Therefore, solving for ΔP:
ΔP = K Δρ / ρ
We can calculate K from Young's modulus (E) and Poisson's ratio (ν):
K = E / (3 (1 - 2ν))
Substituting:
ΔP = E / (3 (1 - 2ν)) (Δρ / ρ)
Before compression:
ρ = m / V
After compression:
ρ+Δρ = m / (V - 0.001 V)
ρ+Δρ = m / (0.999 V)
ρ+Δρ = ρ / 0.999
1 + (Δρ/ρ) = 1 / 0.999
Δρ/ρ = (1 / 0.999) - 1
Δρ/ρ = 0.001 / 0.999
Given:
E = 69 GPa = 69×10⁹ Pa
ν = 0.32
ΔP = 69×10⁹ Pa / (3 (1 - 2×0.32)) (0.001/0.999)
ΔP = 64.0×10⁶ Pa
If we assume seawater density is constant at 1027 kg/m³, then:
ρgh = P
(1027 kg/m³) (9.81 m/s²) h = 64.0×10⁶ Pa
h = 6350 m
Rounded to two sig-figs, the ocean depth at which the sphere's volume is reduced by 0.10% is approximately 6400 m.