1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Katarina [22]
3 years ago
9

A smelter emits SO2 at a rate of 10,000 kg/day. The stack is 200 m tall and the plume rise is 100 m. The windspeed is 2 m/s at a

height of 10 m and it is an overcast day. Estimate the ground-level SO2 concentration in units of µg/m3. a. 6000 m directly downwind b. 6000 m downwind and 300 m off the centerline
Engineering
1 answer:
Olegator [25]3 years ago
5 0

Answer:

lol

Explanation:

lol

You might be interested in
Please help me with this. Plzzz.
Drupady [299]

Answer:

450,000m = 450km = 4.5E5

32,600,000W = 32.6MW = 3.26E7

59,700,000,000cal = 59.7Gcal = 5.97E10

0.000000083s = 83ns = 8.3E-8

35,000Ω = 35kΩ = 3.5E4

Explanation:

Giga   = 1,000,000,000

Mega = 1,000,000

kilo     = 1,000

unit    = 1

deci   = .1

centi  = .01

milli    = .001

micro = .000001

nano = .0000000001

pico  = .000000000001

You should be able to look at these and convert between them in seconds if you want to pursue anything in engineering.

7 0
3 years ago
A hydraulic cylinder is to be used to move a workpiece in a manufacturing operation through a distance of 50 mm in 10 s. A force
svetlana [45]

Answer:

The answer to this question is 1273885.3 ∅

Explanation:

<em>The first step is to determine the required  hydraulic flow rate liquid if working pressure and  if a cylinder with a piston diameter of 100 mm is available.</em>

<em>Given that,</em>

<em>The distance = 50mm</em>

<em>The time t =10 seconds</em>

<em>The force F = 10kN</em>

<em>The piston diameter is = 100mm</em>

<em>The pressure = F/A</em>

<em> 10 * 10^3/Δ/Δ </em>

<em> P = 1273885.3503 pa</em>

<em>Then</em>

<em>Power = work/time  = Force * distance /time</em>

<em> = 10 * 1000 * 0.050/10</em>

<em>which is  =50 watt</em>

<em>Power =∅ΔP</em>

<em>50 = 1273885.3 ∅</em>

5 0
3 years ago
Air exits a compressor operating at steady-state, steady-flow conditions at 150 oC, 825 kPa, with a velocity of 10 m/s through a
ioda

Answer:

a) Qe = 0.01963 m^3 / s , mass flow rate m^ = 0.1334 kg/s

b) Inlet cross sectional area = Ai = 0.11217 m^2 , Qi = 0.11217 m^3 / s    

Explanation:

Given:-

- The compressor exit conditions are given as follows:

                  Pressure ( Pe ) = 825 KPa

                  Temperature ( Te ) = 150°C

                  Velocity ( Ve ) = 10 m/s

                  Diameter ( de ) = 5.0 cm

Solution:-

- Define inlet parameters:

                  Pressure = Pi = 100 KPa

                  Temperature = Ti = 20.0

                  Velocity = Vi = 1.0 m/s

                  Area = Ai

- From definition the volumetric flow rate at outlet ( Qe ) is determined by the following equation:

                   Qe = Ae*Ve

Where,

           Ae: The exit cross sectional area

                   Ae = π*de^2 / 4

Therefore,

                  Qe = Ve*π*de^2 / 4

                  Qe = 10*π*0.05^2 / 4

                  Qe = 0.01963 m^3 / s

 

- To determine the mass flow rate ( m^ ) through the compressor we need to determine the density of air at exit using exit conditions.

- We will assume air to be an ideal gas. Thus using the ideal gas state equation we have:

                   Pe / ρe = R*Te  

Where,

           Te: The absolute temperature at exit

           ρe: The density of air at exit

           R: the specific gas constant for air = 0.287 KJ /kg.K

             

                ρe = Pe / (R*Te)

                ρe = 825 / (0.287*( 273 + 150 ) )

                ρe = 6.79566 kg/m^3

- The mass flow rate ( m^ ) is given:

               m^ = ρe*Qe

                     = ( 6.79566 )*( 0.01963 )

                     = 0.1334 kg/s

- We will use the "continuity equation " for steady state flow inside the compressor i.e mass flow rate remains constant:

              m^ = ρe*Ae*Ve = ρi*Ai*Vi

- Density of air at inlet using inlet conditions. Again, using the ideal gas state equation:

               Pi / ρi = R*Ti  

Where,

           Ti: The absolute temperature at inlet

           ρi: The density of air at inlet

           R: the specific gas constant for air = 0.287 KJ /kg.K

             

                ρi = Pi / (R*Ti)

                ρi = 100 / (0.287*( 273 + 20 ) )

                ρi = 1.18918 kg/m^3

Using continuity expression:

               Ai = m^ / ρi*Vi

               Ai = 0.1334 / 1.18918*1

               Ai = 0.11217 m^2          

- From definition the volumetric flow rate at inlet ( Qi ) is determined by the following equation:

                   Qi = Ai*Vi

Where,

           Ai: The inlet cross sectional area

                  Qi = 0.11217*1

                  Qi = 0.11217 m^3 / s    

- The equations that will help us with required plots are:

Inlet cross section area ( Ai )

                Ai = m^ / ρi*Vi  

                Ai = 0.1334 / 1.18918*Vi

                Ai ( V ) = 0.11217 / Vi   .... Eq 1

Inlet flow rate ( Qi ):

                Qi = 0.11217 m^3 / s ... constant  Eq 2

               

6 0
3 years ago
The minimum safe working distance from exposed electrical conductors
SVEN [57.7K]

Answer:

b

Explanation:

4 0
3 years ago
(a) For a given material, would you expect the surface energy to be greater than, the same as, or less than the grain boundary e
aksik [14]

Answer:

(a) Surface energy is greater than grain boundary energy due to the fact that the bonds of the atoms on the surface are lower than those of the atoms at the grain boundary. The energy is also directly proportional to the number of bonds created.

(b) The energy of a high-angle grain boundary is higher than that of a small-angle grain boundary because the high-angle grain boundary has a higher misalignment and smaller number of bonds than a small-angle grain boundary.

Explanation:

(a) Surface energy is greater than grain boundary energy due to the fact that the bonds of the atoms on the surface are lower than those of the atoms at the grain boundary. The energy is also directly proportional to the number of bonds created.

(b) The energy of a high-angle grain boundary is higher than that of a small-angle grain boundary because the high-angle grain boundary has a higher misalignment and smaller number of bonds than a small-angle grain boundary.

5 0
3 years ago
Other questions:
  • Determine the maximum volume in gallons​ [gal] of olive oil that can be stored in a closed cylindrical silo with a diameter of 3
    12·1 answer
  • In which of the following states are you most likely to find a home with a basement and why?
    13·1 answer
  • Electrical pressure or “force”<br><br> A) current<br> B) resistance <br> C) voltage
    6·1 answer
  • A company that produces footballs uses a proprietary mixture of ideal gases to inflate their footballs. If the temperature of 23
    11·1 answer
  • Consider the freeway in Problem 1. At one point along this freeway there is a 4% upgrade with a directional hourly traffic volum
    15·2 answers
  • 10. True or False: You should select your mechanic before you experience vehicle failure.
    6·2 answers
  • Cryogenic liquid storage. Liquid oxygen is stored in a thin-walled spherical container, 96 cm in diameter, which is further encl
    10·1 answer
  • IF A CAR AHEAD OF YOU HAS STOPPED AT A CROSSWALK, YOU SHOULD:
    12·1 answer
  • What is the process pf distributing and selling clean fuel?​
    6·1 answer
  • Describe the greatest power in design according to Aravena?
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!