1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
viva [34]
3 years ago
13

You don't know which insert you have, and the inserts are different sizes, meaning the amount needed for a 1:3 ratio is differen

t. What do you do? Why? (assume there are enough materials for more than one reaction per person).
Engineering
1 answer:
VashaNatasha [74]3 years ago
6 0

Answer:

Explanation:

For ligation process the 1:3 vector to insert ratio is the good to utilize . By considering that we can take 1 ratio of vector and 3 ratio of insert ( consider different insert size ) and take 10 different vials of ligation ( each calculated using different insert size from low to high ) and plot a graph for transformation efficiency and using optimum transformation efficiency we can find out the insert size.

You might be interested in
For a turbulent flow of a fluid in 0.6 m diameter pipe, the velocity 0.15 m from the wall is 2.7 m/s. Estimate the wall shear st
MAVERICK [17]

Answer:

If the turbulent velocity profile in a pipe of diameter 0.6 m may be approximated by u/U=(y/R)^(1/7), where u is in m/s and y is in m and 0.15 m from the pipe.

Explanation:

hope it helps

3 0
2 years ago
A cylindrical bar of metal having a diameter of 20.2 mm and a length of 209 mm is deformed elastically in tension with a force o
Rus_ich [418]

Answer:

A) ΔL = 0.503 mm

B) Δd = -0.016 mm

Explanation:

A) From Hooke's law; σ = Eε

Where,

σ is stress

ε is strain

E is elastic modulus

Now, σ is simply Force/Area

So, with the initial area; σ = F/A_o

A_o = (π(d_o)²)/4

σ = 4F/(π(d_o)²)

Strain is simply; change in length/original length

So for initial length, ε = ΔL/L_o

So, combining the formulas for stress and strain into Hooke's law, we now have;

4F/(π(d_o)²) = E(ΔL/L_o)

Making ΔL the subject, we now have;

ΔL = (4F•L_o)/(E•π(d_o)²)

We are given;

F = 50500 N

L_o = 209mm = 0.209m

E = 65.5 GPa = 65.5 × 10^(9) N/m²

d_o = 20.2 mm = 0.0202 m

Plugging in these values, we have;

ΔL = (4 × 50500 × 0.209)/(65.5 × 10^(9) × π × (0.0202)²)

ΔL = 0.503 × 10^(-3) m = 0.503 mm

B) The formula for Poisson's ratio is;

v = -(ε_x/ε_z)

Where; ε_x is transverse strain and ε_z is longitudinal strain.

So,

ε_x = Δd/d_o

ε_z = ΔL/L_o

Thus;

v = - [(Δd/d_o)/(ΔL/L_o)]

v = - [(Δd•L_o)/(ΔL•d_o)]

Making Δd the subject, we have;

Δd = -[(v•ΔL•d_o)/L_o]

We are given v = 0.33; d_o = 20.2mm

So,

Δd = -[(0.33 × 0.503 × 20.2)/209]

Δd = -0.016 mm

8 0
3 years ago
5 pts
Softa [21]

Answer:

Helps to accurately calculate job costs

Explanation:

please mark me as brainliest

4 0
3 years ago
Consider insulation on a circular pipe For the same thickness and type of insulation, the thermal resistance of the insulation i
leonid [27]

Answer:

b). The same for all pipes independent of the diameter

Explanation:

We know,

R_{conduction}=\frac{ln(\frac{r_{2}}{r_{1}})}{2\pi LK}

R_{convection}=\frac{1}{h(2\pi r_{2}L)}

From the above formulas we can conclude that the thermal resistance of a substance mainly depends upon heat transfer coefficient,whereas radius has negligible effects on heat transfer coefficient.

We also know,

Factors on which thermal resistance of insulation depends are :

1. Thickness of the insulation

2. Thermal conductivity of the insulating material.

Therefore from above observation we can conclude that the thermal resistance of the insulation is same for all pipes independent of diameter.

5 0
3 years ago
Type the correct answer in the box. Spell all words correctly.
Alik [6]

Answer:

management engineer

Explanation:

A Management Engineer is someone with a commercial engineering understanding and marketing techniques.

The role of a management engineer covers overseeing the activities of all the engineering departments in an engineering firm particularly in the area of product development, implementation, and production.

This is to ensure the products meet and satisfy the business methods and techniques specifically in the area of cost efficiency and quality product.

Under Management Engineering there are subdivisions of Manufacturing and Industrial Engineer, which both fit the role of Malcolm.

Hence, in this case, Malcolm work as a Management Engineer

8 0
3 years ago
Other questions:
  • The volume at a section of a 2-lane highway is 1800 vph in each direction and the density is approximately 30 bpm. A slow moving
    10·1 answer
  • Reasons for racking back on a wall
    15·1 answer
  • 1000 lb boulder B is resting on a 500 lb platform A when truck C accidentally accelerates to the right (truck in reverse). Which
    15·1 answer
  • Windmills slow the air and cause it to fill a larger channel as it passes through the blades. Consider a circular windmill with
    10·1 answer
  • One gram of Strontium-90 has an activity of 5.3 terabecquerels (TBq), what will be the activity of 1 microgram?
    8·1 answer
  • A random sample of 5 hinges is selected from a steady stream of product from a punch press, and the a. b. proportion nonconformi
    12·1 answer
  • With a brief description, What are the 14 principles of management by fayol.​
    10·1 answer
  • What Are 2 Properties electromagnets have that permanent magnets do not?
    8·2 answers
  • _____ are used to control the flow of electricity in a circuit.
    8·2 answers
  • The inspector should inspect insulation in unfinished spaces, including attics, _____ and foundation areas.
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!