- The molar mass of 0.458-gram sample of gas having a volume of 1.20 l at 287 k and 0.980 atm is 9.15g/mol.
- If this sample was placed under extreme pressure, the volume of the sample will decrease.
<h3>How to calculate molar mass?</h3>
The molar mass of a substance can be calculated by first calculating the number of moles using ideal gas law equation:
PV = nRT
Where;
- P = pressure
- V = volume
- T = temperature
- R = gas law constant
- n = no of moles
0.98 × 1.2 = n × 0.0821 × 287
1.18 = 23.56n
n = 1.18/23.56
n = 0.05moles
mole = mass/molar mass
0.05 = 0.458/mm
molar mass = 0.458/0.05
molar mass = 9.15g/mol
- Therefore, the molar mass of 0.458-gram sample of gas having a volume of 1.20 l at 287 k and 0.980 atm is 9.15g/mol
- If this sample was placed under extreme pressure, the volume of the sample will decrease.
Learn more about gas law at: brainly.com/question/12667831
To cut this short and for your understanding, ionic bond is formed between metals (mostly right column in periodic table). Covalent bond is formed between non-metals (mostly left column in periodic table). So polar covalent is also a covalent bond but it is polar, which means the shape of molecules are not symmetrical hence maybe an atom in a molecule has most of the electron attracted to it causing itself to be partial negative (since electron are negatively charged) and the other atom has its electron being attracted by others became partial positive. Polar covalent can also be when H atom is binding either to F, O or N (also known as hydrogen bond).
The correct response would be 3. The alkaline earth metals would tend to lose its valence electrons, in this case 2 of them at different energy levels, to form the same respective ion, which is +2.
A molecular size affects the rate of evaporation when the larger the intermolecular forces in a compound, the slower the evaporation rate and this correlates with temperature change.
Molecular size seems to have an effect on evaporation rates in that the larger a molecule gets or grows from a base chemical formula, its evaporation rate will get slower.
<h3>What is the molecular size?</h3>
This is a measure of the area a molecule occupies in three-dimensional space as this relates to the physical size of an individual molecule.
Hence, we can see that a molecular size affects the rate of evaporation the larger the forces, the lower the rate.
Read more about<em> molecular size</em> here:
brainly.com/question/16616599
#SPJ1
Answer:
The Sun is the closest star to Earth.