Answer:
There was 450.068g of water in the pot.
Explanation:
Latent heat of vaporisation = 2260 kJ/kg = 2260 J/g = L
Specific Heat of Steam = 2.010 kJ/kg C = 2.010 J/g = s
Let m = x g be the weight of water in the pot.
Energy required to vaporise water = mL = 2260x
Energy required to raise the temperature of water from 100 C to 135 C = msΔT = 70.35x
Total energy required = 

Hence, there was 450.068g of water in the pot.
Answer:
It increases when the concentration of reactants increases.
Explanation:
Increasing the concentration of reactants in a reaction increases the amount of reacting molecules or ions which would increase the rate of a chemical reaction. Reaction rate does depend on temperature. Increasing temperature also increases reaction rate because particles move faster with the increased kinetic energy to produce more collisions.
Answer:
215 amu
Explanation:
In the reactants:
There is 1 iron atom, 3 chlorine atoms, 6 hydrogen atoms and 3 oxygen atoms:
- Fe: 56 × 1 = 56
- Cl: 35 × 3 = 105
- H: 1 × 6 = 6
- O: 16 × 3 = 48
56 + 105 + 6 + 48 = 215 amu
Hope this helps!
Answer:
9.51 × 10⁴ kL
Explanation:
Step 1: Given data
Volume of the sample (V): 9.51 × 10⁹ cL
Step 2: Convert "V" to liters
We will use the conversion factor 1 L = 100 cL.
9.51 × 10⁹ cL × (1 L / 100 cL) = 9.51 × 10⁷ L
Step 3: Convert "V" to kL
We will use the conversion factor 1 kL = 1000 L.
9.51 × 10⁷ L × (1 kL / 1000 L) = 9.51 × 10⁴ kL
9.51 × 10⁹ cL is equal to 9.51 × 10⁴ kL.