Answer:
<em>The comoving distance and the proper distance scale</em>
<em></em>
Explanation:
The comoving distance scale removes the effects of the expansion of the universe, which leaves us with a distance that does not change in time due to the expansion of space (since space is constantly expanding). The comoving distance and proper distance are defined to be equal at the present time; therefore, the ratio of proper distance to comoving distance now is 1. The scale factor is sometimes not equal to 1. The distance between masses in the universe may change due to other, local factors like the motion of a galaxy within a cluster. Finally, we note that the expansion of the Universe results in the proper distance changing, but the comoving distance is unchanged by an expanding universe.
Answer:
True
Explanation:
The different sides control the opposite side of the human body
Answer:Newton's three laws of motion relate to each other in that they lay a foundation for the principles of things in motion, then build upon that foundation. For example, the first law of motion,...
Explanation: WEEEEEEEEEEEEEEEEEEEEWOOOOOOOOOOOOOOOOWWWWWWWWWWWWWWWWWWWWWWOOOOOOOOOOOOOOOOOWWWWWWWWWWWWWWWWOOOOOOOOOOOOOOWWWWWWWWWWWWWWWWWWWWWWWWWWWWO-EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE
<u>Answer:</u>
At time 2t the paint ball is at 8 cm to the right and 16 cm to the bottom
<u>Explanation:</u>
We have equation of motion , , s is the displacement, u is the initial velocity, a is the acceleration and t is the time.
Considering the horizontal motion of paint ball
Distance traveled during time t = 4 cm
Initial velocity = u m/s
Acceleration = 0
So
Now at time 2t,
So horizontal distance traveled in time 2t = 8 cm to the right
Now considering the vertical motion of paint ball
Distance traveled during time t = 4 cm
Initial velocity = 0 m/s
Acceleration = -g
At time 2t,
So vertical distance traveled in time 2t = 16 cm to the bottom