Answer:
100 m/s
Explanation:
Mass the mass of Bond's boat is m₁. His enemy's boat is twice the mass of Bond's i.e. m₂ = 2 m₁
Initial speed of Bond's boat is 0 as it won't start and remains stationary in the water. The initial speed of enemy's boat is 50 m/s. After the collision, enemy boat is completely stationary. Let v₁ is speed of bond's boat.
It is the concept of the conservation of momentum. It remains conserved. So,

Putting all the values, we get :

So, Bond's boat is moving with a speed of 100 m/s after the collision.
The answer is inertia becuase it means nothing happening or is doing nothing
Answer:
a) h = 14 m
b) h = 88 cm
c) f = 0.054 Hz
d) f = 0.13 Hz
Explanation:
a) T = 2π√(L/g)
L = T²g/4π²
L = (45/6)²(9.8) / 4π² = 13.963...
b) ½mv² = mgh
h = v²/2g
h = 4.15²/ (2(9.8)) = 0.87869
c) f = 1/T = 1 / (2π√(14 / 1.62)) = 0.0542
d) f = 6/45 = 0.13333...