Answer:
Gram atomic mass of an element can be defined as the mass of one mole of atoms of a particular element. It is numerically equivalent to the value of the element's atomic mass unit but has its unit in grams.
Answer:
1. Synthesis
2. Decomposition
3. Single replacement
4. Synthesis
5. Decomposition
6. Synthesis
Explanation:
Kind of a hard picture to look at but let me define each chemical reaction:
Synthesis:
a + b ---> ab In synthesis elements/compounds come together to form new compounds
Decomposition:
ab ---> a + b In decomposition a compound breaks down to form 2 elements/compounds
Single replacement:
a + bc ---> b + ac In a single replacement one element/compound takes the place of another element/compound.
Double replacement
ab + cd ---> ad + bc In a double replacement 2 compounds exchange different elements/compounds.
Now, let's go through the assignment
1. P + O2 --> P4O10 This is a synthesis reaction because the two elements (P and O) came together to form one compound.
2. HgO ---> Hg + O2 This is a decomposition reaction because HgO broke into separate elements Hg and O.
3. Cl2 + NaBr ---> NaCl + Br2 This is a single replacement reaction because chlorine (Cl) replaced the spot of bromine (Br) to bond with sodium (Na).
4. Mg + O2 ---> MgO This is a synthesis reaction because two elements (Mg and O) came together to form one compound.
5. Al2O3 ---> Al + O2 This is a decomposition reactions because Al2O3 broke into separate elements Al and O.
6. H2 + N2 ---> NH3 This is a synthesis reaction because two elements (H and N) came together to form one compound.
<em>I hope this helps!!</em>
<em>- Kay :)</em>
Answer:
K = 10
Explanation:
Using Hess's law, it is possible to obtain the equilibrium constant, K, of a reaction using K of similar reactions. For example:
<em> If A ⇄ B K = X</em>
B ⇄ A K = 1/X
2A ⇄ 2B K = X².
Thus, if A(g) ⇄ 2B(g) K = 0.010
2B(g) ⇄ A(g) K = 1 / 0.010; K = 100
B(g) ⇄ A(g) K = √100 = 10
<h3>K = 10</h3>
Answer: -
C) because the moon rotates once on its axis in the same time that it takes to revolve around the earth
Explanation: -
The moon rotates about it's axis one full time at about the same time as it takes to rotate around the earth.
This leads to only one side of the moon always appearing to Earth, called the near side.
One side of the moon is always not seen from the earth. It is called the far side of the moon.
Thus we can never see the far side of the moon because the moon rotates once on its axis in the same time that it takes to revolve around the earth
Look up a picture of the elements on a periodic table. Start reading from the top.