Answer:
16.56 g
Explanation:
Mass is the production of Volume and Density.
m = V. d = 6 × 2.76 = 16.56 g
Answer:
The vapor pressure of the solution is 23.636 torr
Explanation:

Where;
is the vapor pressure of the solution
is the mole fraction of the solvent
is the vapor pressure of the pure solvent
Thus,
15.27 g of NaCl = [(15.27)/(58.5)]moles = 0.261 moles of NaCl
0.67 kg of water = [(0.67*1000)/(18)]moles = 37.222 moles of H₂O
Mole fraction of solvent (water) = (number of moles of water)/(total number of moles present in solution)
Mole fraction of solvent (water) = (37.222)/(37.222+0.261)
Mole fraction of solvent (water) = 0.993
<u>Note:</u> the vapor pressure of water at 25°C is 0.0313 atm
Therefore, the vapor pressure of the solution = 0.993 * 0.0313 atm
the vapor pressure of the solution = 0.0311 atm = 23.636 torr
Answer: (2) decreasing the concentration of HCl(aq) to 0.1 M
Explanation: Rate of a reaction depends on following factors:
1. Size of the solute particles: If the reactant molecules are present in smaller size, surface of particles and decreasing the size increases the surface area of the solute particles. Hence, increasing the rate of a reaction.
2. Reactant concentration: The rate of the reaction is directly proportional to the concentration of reactants.
3. Temperature: Increasing the temperature increases the energy of the molecules and thus more molecules can react to give products and rate increases.
(1) Increasing the initial temperature to 25°C will increase the reaction rate.
(2) Decreasing the concentration of HCl(aq) to 0.1 M will decrease the reaction rate due to lesser concentration.
(3) Using 1.2 g of powdered Mg will increase the reaction rate due to large surface area.
(4) Using 2.4 g of Mg ribbon will increase the reaction rate due to high concentration of reactants.
Answer:increasing the concentration of reactants
Explanation:
Collision is the phenomenon in which the reactant molecules come to nearest closness,as a result the reactants are converted into products.
Now the number of effective collision is directly proportional to the number of reactants added..