E = hc/(lamda)
The lamda symbol is wavelength, which this site does not have. I can represent it with an "x" instead.
Plancks constant, h = 6.626×10^-32 J·s
Speed of light, c = 3.00×10^8 m/s
The energy must be greater than or equal to 1×10^-18 J
1×10^-18 J ≤ (6.626×10^-32 J·s)*(3.0×10^8 m/s) / x
x ≤ (6.626×10^-32 J·s)*(3.0×10^8 m/s) / (1×10^-18 J)
x ≤ 1.99×10^-7 m or 199 nm
The wavelength of light must be greater than or equal to 199 nm
Answer:
e. 3
Explanation:
In order to solve this problem we need to keep in mind the definition of pH:
As stated by the problem, the hydrogen ion concentration, [H⁺], is 1x10⁻³ M.
As all required information is available, we now can <u>calculate the pH</u>:
The correct option is thus e.
A form of energy associated with the positive and motion of the object.