<h3>
Answer:</h3>
132.03 g
<h3>
Explanation:</h3>
<u>We are given;</u>
- The equation for the reaction as;
Fe₂O₃ + 3CO → 2Fe + 3CO₂
- Molar masses of CO and CO₂ as 28.01 g/mol and 44.01 g/mol respectively
- Mass of CO as 84 grams
We are required to calculate the mass of CO₂ that will produced.
<h3>Step 1: Calculate the number of moles of CO</h3>
Moles = Mass ÷ Molar mass
Molar mass of CO = 28.01 g/mol
Therefore;
Moles of CO = 84 g ÷ 28.01 g/mol
= 2.9989 moles
= 3.0 moles
<h3>Step 2: Calculate the number of moles of CO₂</h3>
- From the reaction, 3 moles of CO reacts to produce 3 moles of CO₂
- Therefore; the mole ratio of CO to CO₂ is 1 : 1
- Hence; Moles of CO = Moles of CO₂
Moles of CO₂ = 3.0 Moles
But; mass = Moles × molar mass
Thus, mass of CO₂ = 3.0 moles × 44.01 g/mol
= 132.03 g
Hence, the mass of CO₂ produced from the reaction is 132.03 g
Answer: I think it's 1
Explanation: Potential energy means stored energy . In Position 1 it's not moving the energy is being stored. Hope that helps.
A solution has to have at least one solute, but there can be any number more than that. <span>There is only one solvent in any solution, whatever liquid is present in largest amount.</span>
<u>Answer:</u> The products in the given chemical reaction are 
<u>Explanation:</u>
Reactants are defined as the species which react in the reaction and are written on the left side of the reaction arrow.
Products are defined as the species which are produced in the reaction and are written on the right side of the reaction arrow.
For the given chemical equation:

The reactants of the above reaction are
and the products are 
Hence, the products in the given chemical reaction are 