The question is incomplete. The complete question is :
The pressure difference, Δp, ac
ross a partial blockage in an artery (called a stenosis) is approximated by the equation :

Where V is the blood velocity, μ the blood viscosity {FT/L2}, ρ the blood density {M/L3}, D the artery diameter,
the area of the unobstructed artery, and A1 the area of the stenosis. Determine the dimensions of the constants
and
. Would this equation be valid in any system of units?
Solution :
From the dimension homogeneity, we require :

Here, x means dimension of x. i.e.
![$[ML^{-1}T^{-2}]=\frac{[K_v][ML^{-1}T^{-1}][LT^{-1}]}{[L]}+[K_u][1][ML^{-3}][L^2T^{-2}]$](https://tex.z-dn.net/?f=%24%5BML%5E%7B-1%7DT%5E%7B-2%7D%5D%3D%5Cfrac%7B%5BK_v%5D%5BML%5E%7B-1%7DT%5E%7B-1%7D%5D%5BLT%5E%7B-1%7D%5D%7D%7B%5BL%5D%7D%2B%5BK_u%5D%5B1%5D%5BML%5E%7B-3%7D%5D%5BL%5E2T%5E%7B-2%7D%5D%24)
![$=[K_v][ML^{-1}T^{-2}]+[K_u][ML^{-1}T^{-2}]$](https://tex.z-dn.net/?f=%24%3D%5BK_v%5D%5BML%5E%7B-1%7DT%5E%7B-2%7D%5D%2B%5BK_u%5D%5BML%5E%7B-1%7DT%5E%7B-2%7D%5D%24)
So,
dimensionless
So,
and
are dimensionless constants.
This equation will be working in any system of units. The constants
and
will be different for different system of units.
but tpla ybut tpla y but tpl but tpla y but tpla y but tpla ya y but tpla y but tpla y
Answer:
The sum of momenta of each object before and after collision is equal . Thus when they collide , their momentum will change but its sum will be sane as the sum of the momentum before collision
The best and most correct answer among the choices provided by your question is the third choice or letter C.
Lithium is the <span>element that can combine with chlorine to make the best conductor of electricity when in the liquid form because </span><span>it has a much lower electronegativity value.</span>
I hope my answer has come to your help. Thank you for posting your question here in Brainly. We hope to answer more of your questions and inquiries soon. Have a nice day ahead!
Answer:
Explanation:
Mass of ice m = 500g = .5 kg
Heat required to raise the temperature of ice by 10 degree
= mass of ice x specific heat of ice x change in temperature
= .5 x 2093 x 10 J
10465 J
Heat required to melt the ice
= mass of ice x latent heat
0.5 x 334 x 10³ J
167000 J
Heat required to raise its temperature to 18 degree
= mass x specific heat of water x rise in temperature
= .5 x 4182 x 18
=37638 J
Total heat
=10465 +167000+ 37638
=215103 J