Answer:
B) 16.67
Explanation:
If the dimension of one lumber is 2" × 6", the total area of one lumber will be 12inch²
If the total board feet of lumber there is 200in, therefore the total board of lumber that will be needed is 200/12 which gives 16.67 lumbers
Answer:
2.6×10⁻³ N
Explanation:
From coulomb's law,
F = kq'q/r²................ Equation 1
Where F = Repulsive force, q' = charge on the first sugar grain, q = charge on the second sugar grain, r = distance of separation between the sugar grain, k = proportionality constant.
From the question,
since q' = q
Then,
F = kq²/r²..................... Equation 2
Given: q = 1.79×10⁻¹¹ C, r = 3.45×10⁻⁵ m,
Constant: k = 9×10⁹ Nm²/kg².
Substitute into equation 2
F = 9×10⁹(1.79×10⁻¹¹)²/(3.45×10⁻⁵ )²
F = 9×10⁹(3.2041×10⁻²²)/(11.9025×10⁻¹⁰)
F = (28.8369×10⁻¹³)/(11.9025×10⁻¹⁰)
F = 2.6×10⁻³ N.
Answer:
The Heavier Firefighter
Explanation:
Generally, more massive objects will have more intertia than less massive objects. As such it takes more force to halt a more massive object if its moving at the same speed as a smaller object. This can also be thought of in the context of Newton's second law. The more force needed to accelerate an object means the more force the object will have.
Answer:

Explanation:
First we have to find the time required for train to travel 60 meters and impact the car, this is an uniform linear motion:

The reaction time of the driver before starting to accelerate was 0.50 seconds. So, remaining time for driver is 1.5 seconds.
Now, we have to calculate the distance traveled for the driver in this 0.5 seconds before he start to accelerate. Again, is an uniform linear motion:

The driver cover 10 meters in this 0.5 seconds. So, the remaining distance to be cover in 1.5 seconds by the driver are 35 meters. We calculate the minimum acceleration required by the car in order to cross the tracks before the train arrive, Since this is an uniformly accelerated motion, we use the following equation:
