Given data:
- It is a graphical display where the data is grouped in to ranges
- A diagram consists rectangles, whose area is proportional to frequency of a variable and whose width is equal to the class interval.
- It is an accurate representation of the distribution of numerical data.
<em>From Figure:</em>
Each box in the graph (small rectangle box) is assumed to be one download. So, in the graph the time between 8 p.m to 9 p.m, the number of downloads are 8.75 approximately (because the last box is incomplete, therefore 8 complete boxes and 9th is more than half).
<em>So, We conclude that the total number of downloads are approximately 9 in the time span of 8 p.m. to 9 p.m.</em>
Answer:
did you ever get the answer
Centripetal force is equal to (mv^2)/r
The way I use to answer these question is to set every variable to 1
m=1
v=1
r=1
so centripetal force =1
then change the variable we're looking at
and since we're find when it's half we could either change it to 1/2 or 2, but 2 is easier to use
m=1
v=2
r=1
((1)×(2)^2)/1=4
So the velocity in the 1st part is half the velocity in the 2nd part and the centripetal force is 4× less
The answer is the centripetal force is 1/4 as big the second time around
During that period of time, the bird's displacement was 4 km east. So its velocity was (4km east)/(11hrs). That's 0.36 km/hour east. (rounded)
Answer:
θ = 4.78º
with respect to the vertical or 4.78 to the east - north
Explanation:
This is a velocity compound exercise since it is a vector quantity.
The plane takes a direction, the air blows to the west and the result must be to the north, let's use the Pythagorean theorem to find the speed
v_fly² = v_nort² + v_air²
v_nort² = v_fly² + - v_air²
Let's use trigonometry to find the direction of the plane
sin θ = v_air / v_fly
θ = sin⁻¹ (v_air / v_fly)
let's calculate
θ = sin⁻¹ (10/120)
θ = 4.78º
with respect to the vertical or 4.78 to the north-east