It shortens so that the tips reach faster
Answer:
Heating 100 g of water from 10◦C to 50◦C
Explanation:
m₁ ΔT₁ = 2000
m₂ ΔT₂ = 300
m₃ ΔT₃ = 4000
m₄ ΔT₄ = 70
Answer:
P = 16,000 kgm/s
Explanation:
<u><em>Given :</em></u>
Mass = m = 800 kg
Velocity = v = 72 km/hr = 20 m/s
<u><em>Required :</em></u>
Momentum = P = ?
<u><em>Formula:</em></u>
P = mv
<u><em>Solution:</em></u>
P = (800)(20)
P = 16,000 kgm/s
Answer:
the maximum voltage induced in the coil is 2.574 × 10⁻⁵ V
Explanation:
Given the data in the question;
Number of turns N = 10
major axis Ma = 13 cm = 0.13 m
a = 0.13/2 = 0.065 m
Minor axis Mi = 6 cm = 0.06 m
b = 0.06/2 = 0.03 m
we know that; 1 RPM = 0.10472 rad/s
rate of rotation R = 73rpm = 7.64 rad/s
Magnetic field = 55 uT
we know that, Area of ellipse = π × a × b
we substitute
A = π × 0.065 m × 0.03 m
A = 0.006126 m²
so
Maximum Voltage = N × Area × Magnetic field × rate of reaction
we substitute
Maximum Voltage = 10 × 0.006126 × ( 55 × 10⁻⁶ ) × 7.64
Maximum Voltage = 2.574 × 10⁻⁵ V
Therefore, the maximum voltage induced in the coil is 2.574 × 10⁻⁵ V
Answer:
Since at 20V most of the photons released are red then when the voltage keeps increasing the hotter the filament will be, therefore the color of light will be bright red.
Explanation:
The higher the energy the more the electrons in the molecules of the object will be excited, and when they de-excite to their ground states they release energy in the form of infrared light. The increase in voltage and higher temperatures make the object release brighter color and sometimes at the highest temperatures +1400 degrees Celsius, the color glows hot white.