Answer:Electromagnetic force, like all forces, is measured in Newtons. Electrostatic forces are described by Coulomb’s law, and both electric and magnetic forces are covered by the Lorentz force law. However, Maxwell’s four equations provide the most detailed description of electromagnetism.
Explanation:
<span>a = (v2 - v1)/t= acceleration formula
a = (70 - 0)/7
a = 10 km/hr/sec
-----
It's better to use as few units as possible.
10 km/hr = 10 km*1000 m/km/(1 hr*3600 sec/hr) = 25/9 m/sec
a= 25/9 m/sec/se</span>
A square loop whose sides are long is made of copper wire of radius , given the resistivity of copper is . if the magnetic field perpendicular to the loop changes at a constant rate of I = 14.029 mA.
The basic characteristic of a substance that measures how effectively it resists an electric current is called electrical resistance. A material with low resistance is a material that easily conducts electric current. A Greek letter is often used to indicate resistivity. Electrical resistance is a basic property of a material that measures how strongly it resists an electric current. The SI unit for electrical resistance is the ohmmeter.
We use magnetic field as a tool to describe how the magnetic field is distributed in the space around and inside something of a magnetic nature. A material with low resistance is a material that easily conducts electric current. A Greek letter is often used to indicate resistivity. An ohmmeter is a unit of electrical resistance in the SI system.
Learn more about magnetic field here;
brainly.com/question/24397546
#SPJ4
The complete question is :
A square loop whose sides are 6.0-cm long is made with copper wire of radius 1.0 mm. If a magnetic field perpendicular to the loop is changing at a rate of 5.0 mT/s, what is the current in the loop?
Answer:
0.074m/s
Explanation:
We need the formula for conservation of momentum in a collision, this equation is given by,

Where,
= mass of ball
= mass of the person
= Velocity of ball before collision
= Velocity of the person before collision
= velocity of ball afer collision
= velocity of the person after collision
We know that after the collision, as the person as the ball have both the same velocity, then,


Re-arrenge to find
,

Our values are,
= 0.425kg
= 12m/s
= 68.5kg
= 0m/s
Substituting,


<em />
<em>The speed of the person would be 0.074m/s after the collision between him/her and the ball</em>
Answer : The height is 188 meters
Explanation : When the cart reached at the end from top of hill then the cart have potential energy .
Given that,
Potential energy = 88435 J
Mass of cart = 48 kg
We know that,
The potential energy is



So, the height of the top is 188 meters.