Answer:
approximately 15.1 grams.
Explanation:
The key to chemistry is to change everything to moles. Then when you have the answer in moles change the answer back to grams, liters, or whatever you want.
change 25 grams of potassium chlorate to moles.
calculate the gram molecular mass of potassium chlorate.
Chlorate is Cl with 3 oxygens. ate = saturated. Chlorine has seven valance electrons when it is saturated six of these electrons are used by oxygen ( 2 electrons per oxygen) leaving only 1 electron.
1 K x 39 grams/mole
+1 Cl x 35.4 grams/ mole
+3 O x 16 grams/ mole
= 122.4 grams / mole Potassium Chlorate
25
122.4
= moles.
2.05 moles of Potassium Chlorate.
There is a 1:1 mole ratio. 1 mole of Potassium Chlorate will produce 1 mole of Potassium Chloride.
2.05 moles of Potassium Chlorate will produce 2.05 moles of Potassium Chloride.
Find the gram molecular mass of Potassium Chloride.
1 K x 39 = 39
+1 Cl x 35.4 = 35.4
= 74.4 grams / mole.
2.05 moles x 74.4 grams/ mole = 15.2 grams
Hope it helps :)
Given:
Diprotic weak acid H2A:
Ka1 = 3.2 x 10^-6
Ka2 = 6.1 x 10^-9.
Concentration = 0.0650 m
Balanced chemical equation:
H2A ===> 2H+ + A2-
0.0650 0 0
-x 2x x
------------------------------
0.065 - x 2x x
ka1 = 3.2 x 10^-6 = [2x]^2 * [x] / (0.065 - x)
solve for x and determine the concentration at equilibrium.
The shape of the molecule will determine the direction of each of the individual bond dipoles, and thus, will always play a role in determining the polarity of the molecule as a whole.
How will the candle contributes to the pressure and temperature of gases inside the glass?
The candle contributes to the pressure and temperature of the gases inside the glass because of the increasing temperature the lit of the candle disposes into the gas molecules inside and as these gas molecules rise in temperature they become unsettling and since heat makes gas molecules robust the area becomes smaller for them to be ecstatic and as the dynamics is explained p=f/a the pressure increases.