Complete Question:
Ions to calculate the p-values: Na⁺, Cl⁻, and NH₄⁺
Answer:
pNa = 0.307
pCl = 0.093
pNH₄ = 0.503
Explanation:
The p-value is calculated by the antilog of the concentration of the substance of interest. For example, pH = -log[H⁺]. Thus, first, let's find the ions concentration.
Both substances are salts that solubilize completely, thus, by the solution reactions:
NaCl → Na⁺ + Cl⁻
NH₄Cl → NH₄⁺ + Cl⁻
So, for both reactions the stoichiometry is 1:1:1 and the concentration of the ions is equal to the concentration of the salts.
[Na⁺] = 0.493 M
[Cl⁻] = 0.493 + 0.314 = 0.807 M
[NH₄⁺] = 0.314 M
The p-values are:
pNa = -log[Na⁺] = -log(0.493) = 0.307
pCl = -log[Cl⁻] = -log(0.807) = 0.093
pNH₄ = -log[NH₄⁺] = -log(0.314) = 0.503
The four steps of food safety are:
- Clean: Wash your hands and clean surfaces often
- Separate: Don't cross-contaminate the food
- Cook: Cook the food to the right temperature
- Chill: Refrigerate promptly
Hope this helps! If you need more help or have any questions just message me! :)
Answer:
.✓is related to the solute content
✓gives information about potential changes in cell volume when cells are placed in that solution
√is related to membrane permeability to solutes.
Explanation:
Tonicity of a solution can be explained as how an extracellular solution can give room for the liquid to move in and out of the cell through osmosis.
It should be noted that Tonicity of a solution is
.✓is related to the solute content
✓gives information about potential
changes in cell volume when cells are placed in that solution
√is related to membrane permeability to solutes.
Answer:
The answer to your questions is Cm = 25.5 J/mol°C
Explanation:
Data
Heat capacity = 0.390 J/g°C
Molar heat capacity = ?
Process
1.- Look for the atomic number of Zinc
Z = 65.4 g/mol
2.- Convert heat capacity to molar heat capacity
(0.390 J/g°C)(65.4 g/mol)
- Simplify and result
Cm = 25.5 J/mol°C
Newton's first law of motion states that an object at rest will remain at rest unless an unbalanced force acts on it. If you apply balanced forces on the object there would be no net force. The body does not accelerate but instead stays at rest.
Another way to look at this problem is to use Newton's second law of motion. The first law states that
, where
is the acceleration
is the net force and
is the mass of the object.
When F is zero, the acceleration of the object is zero. This means that if the object had a velocity of zero before the balanced forces started acting, the velocity will stay at zero after the balanced forces begin to act. If the object was moving at a constant velocity before the balanced forces started acting on it, it would continue at that constant velocity after the balanced forces begin to act.