1. The mass of 1.33×10²² mole of Sb is 1.62×10²⁴ g
2. The mass of 4.75×10¹⁴ mole of Pt is 9.26×10¹⁶ g
3. The mass of 1.22×10²³ mole of Ag is 1.32×10²⁵ g
4. The mass of 9.85×10²⁴ mole of Cr is 5.12×10²⁶ g
<h3>1. Determination of the mass of 1.33×10²² mole of Sb</h3>
- Mole of Sb = 1.33×10²² mole
- Molar mass of Sb = 122 g/mol
Mass = mole × molar mass
Mass of Sb = 1.33×10²² × 122
Mass of Sb = 1.62×10²⁴ g
<h3>2. Determination of the mass of 4.75×10¹⁴ mole of Pt</h3>
- Mole of Pt = 4.75×10¹⁴ mole
- Molar mass of Pt = 122 g/mol
Mass = mole × molar mass
Mass of Pt = 4.75×10¹⁴ × 195
Mass of Pt = 9.26×10¹⁶ g
<h3>3. Determination of the mass of 1.22×10²³ mole of Ag</h3>
- Mole of Ag = 1.22×10²³ mole
- Molar mass of Ag = 108 g/mol
Mass = mole × molar mass
Mass of Ag = 1.22×10²³ × 108
Mass of Ag = 1.32×10²⁵ g
<h3>4. Determination of the mass of 9.85×10²⁴ mole of Cr</h3>
- Mole of Cr = 9.85×10²⁴ mole
- Molar mass of Cr = 52 g/mol
Mass = mole × molar mass
Mass of Cr = 9.85×10²⁴ × 52
Mass of Cr = 5.12×10²⁶ g
Learn more about mole:
brainly.com/question/13314627
Absolute zero that means cooling - 0 degree
2 <span>KOH +1 H3AsO4 →1 K2HAsO4 + 2 H2O</span>
Instability
Explanation:
Isotopes decays because they are unstable. Stable isotopes do not decay.
- For every atomic nucleus, there is a specific neutron/proton ratio.
- This ratio ensure that a nuclide is stable.
- For example, fluorine F, is 10/9 stable.
- Any nucleus with a neutron/proton combination different from its stability ratio either too many neutrons or too many protons will become unstable.
- Such nuclide will split into one or more other nuclei with the emission of small particles of matter and considerable amount of energy.
Learn more:
Radioactive brainly.com/question/10125168
#learnwithBrainly