Answer:

Explanation:
Hello,
In this case, we use the ideal gas equation to compute the volume as shown below:

Nonetheless we are given mass, for that reason we must compute the moles of gaseous fluorine (molar mass: 38 g/mol) as shown below:

Thus, we compute the volume with the proper ideal gas constant, R:

Best regards.
Answer:
≅ 16.81 kJ
Explanation:
Given that;
mass of acetone = 31.5 g
molar mass of acetone = 58.08 g/mol
heat of vaporization for acetone = 31.0 kJ/molkJ/mol.
Number of moles = 
Number of moles of acetone =
Number of moles of acetone = 0.5424 mole
The heat required to vaporize 31.5 g of acetone can be determined by multiplying the number of moles of acetone with the heat of vaporization of acetone;
Hence;
The heat required to vaporize 31.5 g of acetone = 0.5424 mole × 31.0 kJ/mol
The heat required to vaporize 31.5 g of acetone = 16.8144 kJ
≅ 16.81 kJ
Tundra soils are formed at high latitudes which leaves the tundra always very cold. Tundra soils are generally frozen, and are classifed as Gelisols (this means that permafrost are within 100 cm of the soil surface). These permafrost are as a result of the freezing by winter of the underground water that was accumulated in summer. These soils freeze and thaw alot and as result of that, moisture do not permeate the soil easily. Also, due to this harsh temperature and underground permafrost, most organisms that died in the tundra are preserved within the soil.
Answer:
S²⁻(aq) + Cr²⁺(aq) ⇄ CrS(s)
Explanation:
The molecular equation includes all the species in the molecular form. Usually, it is useful to write this first to balance the equation. This is a double displacement reaction.
K₂S(aq) + Cr(NO₃)₂(aq) ⇄ 2 KNO₃(aq) + CrS(s)
The full ionic equation includes all ions and the species that no dot dissociate in water.
2 K⁺(aq) + S²⁻(aq) + Cr²⁺(aq) + 2 NO₃⁻(aq) ⇄ 2 K⁺(aq) + 2 NO₃⁻(aq) + CrS(s)
The net ionic equation includes only those ions that participate in the reaction and the species that do not dissociate in water.
S²⁻(aq) + Cr²⁺(aq) ⇄ CrS(s)