Answer:
In the - j direction, that is negative of the y-axis
Explanation:
As typed in the question, the position of the object is given by the expression in three component ( i, j, k) form:
r (t) = 5 i - (t + 1 ) j + t^3 k
and since the velocity is the derivative of position with respect to time, by doing the derivative of this expression we get:
v(t) = 0 i - 1 j +3 t^2 k
which for the initial velocity requested (that is at time zero) we have:
v(t) = 0 i - 1 j +3 (0)^2 k = = 1 j
Then the direction of the initial velocity is entirely in the direction of the j versor, that is pointing to the negative of the y-axis.
Letter B because it is gaining more potential energy as it SLOWLY climbs up the hill.
the less motion the more potential energy there is
Answer:
that best describes the process is C
Explanation:
This problem is a calorimeter process where the heat given off by one body is equal to the heat absorbed by the other.
Heat absorbed by the smallest container
Q_c = m ce (
-T₀)
Heat released by the largest container is
Q_a = M ce (T_{i}-T_{f})
how
Q_c = Q_a
m (T_{f}-T₀) = M (T_{i} - T_{f})
Therefore, we see that the smaller container has less thermal energy and when placed in contact with the larger one, it absorbs part of the heat from it until the thermal energy of the two containers is the same.
Of the final statements, the one that best describes the process is C
since it talks about the thermal energy and the heat that is transferred in the process