Answer:
– 2.5 m/s²
Explanation:
We have,
• Initial velocity, u = 180 km/h = 50 m/s
• Final velocity, v = 0 m/s (it stops)
• Time taken, t = 20 seconds
We have to find acceleration, a.
a = (v ― u)/t
a = (0 – 50)/20 m/s²
a = –50/20 m/s²
a = – 5/2 m/s²
a = – 2.5 m/s² (Velocity is decreasing) [Answer]
Answer:
The value of the spring constant of this spring is 1000 N/m
Explanation:
Given;
equilibrium length of the spring, L = 10.0 cm
new length of the spring, L₀ = 14 cm
applied force on the spring, F = 40 N
extension of the spring due to applied force, e = L₀ - L = 14 cm - 10 cm = 4 cm
From Hook's law
Force applied to a spring is directly proportional to the extension produced, provided the elastic limit is not exceeded.
F ∝ e
F = ke
where;
k is the spring constant
k = F / e
k = 40 / 0.04
k = 1000 N/m
Therefore, the value of the spring constant of this spring is 1000 N/m
Answer:
The force of friction that acts on him is

Explanation:
The firefighter with an acceleration of 3m/s^2 take the gravity acceleration as 10m/s^2 isn't necessary to know the coefficient of friction just to know the force of friction:




Sole to Fk



Work=f.d
Work=100*50 = 500
Power = work/time = 500/4
=125 watt