The mass of a radioactive element at time t is given by

where

is the mass at time zero, while

is the half-life of the element.
In our problem,

, t=121.0 s and

, so we can find the initial mass

:
You will use the height of the bridge from the ground.
Solution:
Formula to be used is y=Viy(t)+g(t^2)/2
Where:
Vi=initial velocity which is 0 m/s
y=10 m
Gravitational acceleration or g =9.8m/s^2
T= time you need
Substitute all the given to the formula
10m=(0m/s)(t)+(9.8m/s^2)(t^2)/2
10mx2=9.8m/s^2(t^2)
Now isolate the variable you want to find which is T or time
10mx2/9.8m/s^2=t^2
20m/9.8m/s^2=t^2
Square root of 2.04= square root of t^2
T=1.43 secs
The answer is 1.43 seconds
Answer: D
<u></u>
X: positive
Y: negative
Explanation:
It's either A or D and I chose A and got it wrong.
Hello!
We can use the kinematic equation:

a = acceleration (m/s²)
vf = final velocity (45 m/s)
vi = initial velocity (25 m/s)
t = time (5 sec)
Plug in the givens:
