Answer:
may be upside down alphabet :"T"
Explanation:
Answer:
2.083 V.
Explanation:
Stopping potential is the potential that is required to stop the current to zero . This potential is applied externally to oppose the potential created by the photoelectric effect . It gives the measure the photoelectric potential being generated .
Here current drops to 25 μA to 19 μA by a potential of 500mV
Change in current
= 25 - 19 = 6 μA
Voltage requirement for unit reduction in current
= 500 / 6 μA
To reduce current 0f 25 μA
requirement of V = (500 / 6 ) x 25 = 2083.33 mV = 2.083 V.
Answer: 6.9x 107 in standard form is 69,000,000
Answer:
The electron cloud is mostly empty space
Answer:
The velocity with which the jumper strike the mat in the landing area is 6.26 m/s.
Explanation:
It is given that,
A high jumper jumps over a bar that is 2 m above the mat, h = 2 m
We need to find the velocity with which the jumper strike the mat in the landing area. It is a case of conservation of energy. let v is the velocity. it is given by :

g is acceleration due to gravity

v = 6.26 m/s
So, the velocity with which the jumper strike the mat in the landing area is 6.26 m/s. Hence, this is the required solution.