<h2>Arch Carries the thrust of Weight - Option D</h2>
An arch carries the thrust of weight to its sides. With a post-and-lintel, the horizontal part of the structure supports all the weight above it. The reason is that the post and lintel is a system of construction. In this the powerful parallel components are kept up by powerful upward components that has large cavities between them.
Therefore, an arch carries the thrust of weight to its sides for balancing purposes.
Depends on the weight of the bird.
1) Half a mile is about 800m.
2) 14000 lbs = about 6 tones, same like couple 4WD
3) Fuel consumption is about 20L per 100km or 0.2l each 1km or 0.16L within 800m
4) density of fuel is about 70% of density of water so .... weight of 1.6L of fuel burned would be about 1.6*0.7=1.1 kg
So if birds mass would be below 1 kg - the bridge will not collapse. But if it would be a pelican with the mass of 9kg - it would be a drama :)
Answer:
kinetic energy will be equal to 0
Explanation:
this is because at final position velocity of body will become zero.
kinetic energy eill be 8 times
Answer:
d = 1.24 kg/m³
v = 0.81 m³/kg
Explanation:
To do this, we need to analyze the given data and know the expressions we need to use here to do calculations.
We have a pressure of 1.05 atm and 300 K of temperature. To determine the density, we need to use a similar expression of an ideal gas. In this case, instead of using moles, we will use density:
P = dRT
d = P/RT (1)
Where:
R: universal constant of gases
d: density.
From here we can determine the specific volume by using the following expression:
v = 1/d (2)
Now, as we are looking for density, we need to convert the units of pressure in atm to Pascal (or N/m) and the conversion is the following:
P = 1.05 atm * 1.013x10⁵ N/m atm = 106,365 N/m
Now, using R as 287 the density would be:
d = 106,365 / (287 * 300)
<h2>
d = 1.24 kg/m³</h2>
Finally the specific volume:
v = 1 / 1.41
<h2>
v = 0.81 m³/kg</h2>
Hope this helps
Answer:
Gravitational potential energy (GPE) = 107.8J
Explanation:
Gravitational potential energy (GPE) = mgh
Where mass(m) = 11kg
Acceleration due to gravity(g) = 9.8m²/s
height = assumed to be 1m
Force(F) = mg
Force(F) = 11×9.8 = 107.8N
Gravitational potential energy (GPE) = 107.8×1
= 107.8J