As a substance is changing from a liquid to a gas, the distance between its molecules increases, and the temperature of the system remains the same.
Option A
<u>Explanation:</u>
The external energy required to change from one state to another is mostly considered as temperature. So on increase in temperature, the solid changes to liquid and the liquid changes to gases. But the temperature remains constant in the system after changing the phase.
This is because when the temperature is increased on a liquid system, the rise in temperature is utilized for breaking the bonds and thus the molecules will be distanced from each other. If we consider liquid - gas phase transition, the gas molecules are farther distanced compared to liquid molecules.
So the rise in temperature is utilized for breaking the bonds and also to provide the kinetic energy to the gas molecules as they are tend to move more freely compared to liquid. Thus, the distance between the molecules increases, and the temperature of the system remains the same on changing from liquid to gas.
Answer:
For the given conditions the fundamental frequency is 3728.26 Hertz
Explanation:
We know that for a pipe open at one end and closed at other end the fundamental frequency is given by

where
f is the fundamental frequency
is the speed of sound in air in the surrounding conditions.
L = Length of the pipe
Applying values we get and using speed of sound as 343m/s we get

Answer:
Convex lens and convex mirrors are similar that
1. They have the same image characteristics at various object positions
2. They possess a positive focal length
3. Both their ray lines converge to a particular focal point
Answer:
combination of strength and speed
Explanation:
please like and Mark as brainliest