Answer:
149,700,000 km (= 1.50 x 10⁸ km)
Explanation:
Given,
Speed of light, c = 300,000 km/s
Time Taken = 8 min 19 s = 499 seconds
Recall, Distance = Speed x Time
= 300,000 km/s x 499 s
= 149,700,000 km
= 1.50 x 10⁸ km
Answer
given,
v = (6 t - 3 t²) m/s
we know,


position of the particle

integrating both side

x = 3 t² - t³
Position of the particle at t= 3 s
x = 3 x 3² - 3³
x = 0 m
now, particle’s deceleration


a = 6 - 6 t
at t= 3 s
a = 6 - 6 x 3
a = -12 m/s²
distance traveled by the particle
x = 3 t² - t³
at t = 0 x = 0
t = 1 s , x = 3 (1)² - 1³ = 2 m
t = 2 s , x = 3(2)² - 2³ = 4 m
t = 3 s , x = 0 m
total distance traveled by the particle
D = distance in 0-1 s + distance in 1 -2 s + distance in 2 -3 s
D = 2 + 4 + 2 = 8 m
average speed of the particle



Answer:
(a) the work done by the student is 110.1 J
(b) The gravitational force that acts on the amplifier is 102.9 N
Explanation:
Given;
mass of the amplifier, m = 10.5 kg
initial position of the amplifier, x₀ = 1.82 m
final position of the amplifier, x₁ =0.75 m
The dispalcement of the amplifier Δx = x₁ - x₀ = 1.82 m - 0.75 m = 1.07 m
(b) The gravitational force that acts on the amplifier;
F = mg
F = 10.5 x 9.8
F = 102.9 N
(a) the work done by the student is calculated as;
W = FΔx
W = 102.9 x 1.07
W = 110.1 J