Answer: option B
Explanation: when a neutral atom loses an electron or gains a positive charge electron, it becomes a positive ion (positively charged) and when an neutral atom gains an electronic charge or losses a positive charge electron, it becomes a negative ion (negatively charged).
Choice-'b' says the formula for kinetic energy in words.
KE = (1/2) · (M) · (S²)
Answer:
The shortest braking distance is 35.8 m
Explanation:
To solve this problem we must use Newton's second law applied to the boxes, on the vertical axis we have the norm up and the weight vertically down
On the horizontal axis we fear the force of friction (fr) that opposes the movement and acceleration of the train, write the equation for each axis
Y axis
N- W = 0
N = W = mg
X axis
-Fr = m a
-μ N = m a
-μ mg = ma
a = μ g
a = - 0.32 9.8
a = - 3.14 m/s²
We calculate the distance using the kinematics equations
Vf² = Vo² + 2 a x
x = (Vf² - Vo²) / 2 a
When the train stops the speed is zero (Vf = 0)
Vo = 54 km/h (1000m/1km) (1 h/3600s)= 15 m/s
x = ( 0 - 15²) / 2 (-3.14)
x= 35.8 m
The shortest braking distance is 35.8 m
The annual production of carbon dioxide is 124121.49×10^{6}[/tex] kg.
First we calculate the fuel consumed by each car in a year
Fuel consumed=6990/21.4=326.63 gallon
Now we calculate the amount of fuel consumed by 40 million cars in a year
Fuel consumed=326.63*40*10^6=13065.42 million gallon,
Now we can calculate the annual production of carbon dioxide in the USA
CO2 production rate=9.50*13065.42=124121.49*10^6 kg
Therefore the annual production of carbon dioxide in USA is 124121.49×10^{6}[/tex] kg