Answer:
1, 2, and 3.
Explanation:
Hello.
In this process, since the phase transitions that require energy are those that pass from a state with less energy or more molecular order to a state with more energy or less molecular order, say, from solid to liquid (melting), from liquid to gas (boiling) and from solid to gas (sublimation), we can conclude that the arrows representing heat energy gained are 1, 2, and 3 since 1 represents boiling, 2 melting and 3 sublimation.
Best regards.
Force = mass x acceleration
15 = mass x 4
Mass = 15/4
Mass = 3.75 Kg
Answer:
W = 19.845 J
Explanation:
Work is defined as W = Fdcos, where F is the force exerted and d is the distance. Because the direction the ball is falling is the same direction as the force itself, = 0 deg, and since cos(0) = 1, this equation is equivalent to W = Fd. In this case, the force exerted is the weight force, which is equivalent to m * g. Substituting you get:
W = mgd = 0.810 kg * 9.8 m/s^2 * 2.5m
W = 19.845 J
Answer:
Accelerating charges.
Explanation:
Electromagnetic waves are waves produced by the vibration of both electrical and magnetic fields.
This interaction produces an energy source that does not require any medium to propagate.
To produce electromagnetic waves, electric and magnetic fields must be vibrating.
An electric charge produced when vibrating under voltage will produce electromagnetic waves. This is the same for all sources of these waves.
The sun produces electromagnetic waves. A lot of human activities also does this.
Answer:
m=417.24 kg
Explanation:
Given Data
Initial mass of rocket M = 3600 Kg
Initial velocity of rocket vi = 2900 m/s
velocity of gas vg = 4300 m/s
Θ = 11° angle in degrees
To find
m = mass of gas
Solution
Let m = mass of gas
first to find Initial speed with angle given
So
Vi=vi×tanΘ...............tan angle
Vi= 2900m/s × tan (11°)
Vi=563.7 m/s
Now to find mass
m = (M ×vi ×tanΘ)/( vg + vi tanΘ)
put the values as we have already solve vi ×tanΘ
m = (3600 kg ×563.7m/s)/(4300 m/s + 563.7 m/s)
m=417.24 kg