Angular momentum is conserved, just before the clay hits and just after;
<span>mv(L/2) = Iw </span>
<span>I is the combined moment of inertia of the rod, (1/12)ML^2 , and the clay at the tip, m(L/2)^2 ; </span>
<span>I = [(1/12)ML^2 + m(L/2)^2] </span>
<span>Immediately after the collision the kinetic energy of rod + clay swings the rod up so the clay rises to a height "h" above its lowest point, giving it potential energy, mgh. From energy conservation in this phase of the problem; </span>
<span>(1/2)Iw^2 = mgh </span>
<span>Use the "w" found in the conservation of momentum above; and solve for "h" </span>
<span>h = mv^2L^2/8gI </span>
<span>Next, get the angle by noting it is related to "h" as; </span>
<span>h = (L/2) - (L/2)Cos() </span>
<span>So finally </span>
<span>Cos() = 1- 2h/L = 1 - mv^2L/4gI </span>
<span>m=mass of clay </span>
<span>M=mass of rod </span>
<span>L=length of rod </span>
<span>v=velocity of clay</span>
The apparent velocity is B) 48 m/s north
Explanation:
Here we have a problem of relativity of velocities.
In fact, the train is travelling north at a speed of

where this velocity is measured with respect to the ground.
At the same time, a passenger on the train is walking towards the rear (so, south) at a velocity of

where this velocity is measured with respect to the train, which is in motion in the opposite direction.
Therefore, the apparent velocity of the passenger with respect to an observer standing on the ground is:

And the direction is north, since this number is positive.
Learn more about velocity:
brainly.com/question/5248528
#LearnwithBrainly
Answer:
Best answer will get Brainliest!!!
What is the volume scaled down by a factor of 1/10
Measurements:
Top: 7 in, both sides: 12 in, front: 12 in, back: 12 in, bottom: 7 in
Please help!
Explanation:
Answer:
No.
Explanation:
Given that Kevin decides to soup up his car by replacing the car's wheels with ones that have 1.4 times the diameter of the original wheels. Note that the speedometer in a car is calibrated based on the tire's diameter and on the distance the tire covers in each revolution. (a) Will the reading of the speedometer change ?
Considering the formula
V = wr
Where
V = linear speed
W = angular speed
r = radius of the wheel.
But W = 2πrf
Where the the 2 and pi are constant. The radius of the first wheel will be small but counter balance with the larger frequency.
While the radius of the second wheel may be large but it will be of a small frequency.
We can therefore conclude that the reading on the speedometer will not change. Because speedometer will read the linear speed V.
Answer:
Explanation:
As the circuit is parallel, then there is no effect of other branches as the potential difference across each arm is same.