1 is the answer because I studied science it's right number 1 is the correct one homogeneous composition
When PH + POH = 14
∴ POH = 14 -7 = 7
when POH = -㏒[OH-]
7 = -㏒ [OH-]
∴[OH-] = 10^-7
by using ICE table:
Mn(OH)2(s) ⇄ Mn2+ (aq) + 2OH-(aq)
initial 0 10^-7
change +X +2X
Equ X (10^-7 + 2X)
when Ksp = [Mn2+][OH-]^2
when Ksp of Mn(OH)2 = 4.6 x 10^-14
by substitution:
4.6 x 10^-14 = X*(10^-7+2X)^2 by solving this equation for X
∴ X =2.3 x 10-5 M
∴ The solubility of Mn(OH)2 in grams per liter (when the molar mass of Mn(OH)2 = 88.953 g/mol
= 2.3 x10^-5 moles/L * 88.953 g/mol
= 0.002 g/ L
It’s B. The kinetic molecular theory states that matter is made up of constantly moving particles.
The density of a material is the mass of the material per unit volume. Here the weight of the same metal is 44.40g, 40.58g and 38.35g having volume 4.8 mL, 4.7 mL and 4.2 mL respectively. Thus the density of the metal as per the given data are,
= 9.25g/mL,
= 8.634g/mL and
= 9.130g/mL respectively.
The equation of the standard deviation is √{∑(x -
)÷N}
Now the mean of the density is {(9.25 + 8.634 + 9.130)/3} = 9.004 g/mL.
The difference of the density of the 1st metal sample (9.25-9.004) = 0.246 g/mL. Squaring the value = 0.060.
The difference of the density of the 2nd metal sample (9.004-8.634) =0.37 g/mL. Squaring the value = 0.136.
The difference of the density of the 3rd metal sample (9.130-9.004) = 0.126 g/mL. Squaring the value 0.015.
The total value of the squared digits = (0.060 + 0.136 + 0.015) = 0.211. By dividing the digit by 3 we get, 0.070. The standard deviation will be
. Thus the standard deviation of the density value is 0.265g/mL.
Answer:
wearing open toed shoes
Explanation:
this is because you could drop said chemicals and hurt yourself unless you are where some cover on your feet.