Answer:
The answer to your question is 16 g
Explanation:
Data
Percent by mass = 8%
Mass of the solution = 200 g
Mass of solute = ?
Formula
Percent by mass = mass of solute / mass of solution x 100
- Solve for mass of solute
Mass of solute = Percent by mass x mass of solution / 100
- Substitution
Mass of solute = 8 x 200 / 100
- Simplification
Mass of solute = 1600 / 100
- Result
Mass of solute = 16 g
At the same temperature, steam burns are often more severe that water burns because of water's high HEAT OF VAPORIZATION.
Water possesses high heat of vaporization. The heat of vaporization refers to the amount of heat that is needed to convert a unit mass of water to gas. After getting to the boiling point, a lot of heat is still needed to be absorbed by a boiling water before it can be converted to the gaseous form. Thus, the heat that is inherent in the steam is greater than that which is found in the boiling water, that is why the steam causes more damages.
B is correct
salt lowers the freezing point of water (colligative property) by lowering the interaction and intermolecular forces between water molecules
Answer : The normal boiling point of ethanol will be,
or 
Explanation :
The Clausius- Clapeyron equation is :

where,
= vapor pressure of ethanol at
= 98.5 mmHg
= vapor pressure of ethanol at normal boiling point = 1 atm = 760 mmHg
= temperature of ethanol = 
= normal boiling point of ethanol = ?
= heat of vaporization = 39.3 kJ/mole = 39300 J/mole
R = universal constant = 8.314 J/K.mole
Now put all the given values in the above formula, we get:


Hence, the normal boiling point of ethanol will be,
or 
Answer:
D. 7
Explanation:
The halogens are found in Group 7 of the Periodic Table. If Bromine is a halogen, then that means it would be found in Group 7. Also, elements in Group 7 have 7 electrons in its outer shell, Bromine would have 7 electrons in its outer shell.