Answer: 30 metres
Explanation:
Initial velocity of object = 120m/s
Time taken = 4.0s
Distance covered by object = ?
Recall that distance = (Change in velocity / Time taken)
Distance = (120m/s)/4.0s
= (120m/s) / 4.0s
= 30m
Thus, the object will be 30 metres high
The lack of an atmosphere means convection cannot happen on the moon. Therefore, there is no form of heat dissipation on regions in direct sunlight. In addition, the lack of an atmosphere means there is no greenhouse effect on the moon. This is why regions facing away from sunlight are very cold.
Answer:
W= 4.89 KJ
Explanation:
Lets take
temperature of hot water T₁ = 100⁰C
T₁ = 373 K
Temperature of cold ice T₂= 0⁰C
T₂ = 273 K
The latent heat of ice LH= 334 KJ
The heat rejected by the engine Q= m .LH
Q₂= 0.04 x 334
Q₂= 13.36 KJ
Heat gain by engine = Q₁
For Carnot engine


Q₁ = 18.25 KJ
The work W= Q₁ - Q₂
W= 18.25 - 13.36 KJ
W= 4.89 KJ
Answer:
T = 92.8 min
Explanation:
Given:
The altitude of the International Space Station t minutes after its perigee (closest point), in kilometers, is given by:

Find:
- How long does the International Space Station take to orbit the earth? Give an exact answer.
Solution:
- Using the the expression given we can extract the angular speed of the International Space Station orbit:

- Where the coefficient of t is angular speed of orbit w = 2*p / 92.8
- We know that the relation between angular speed w and time period T of an orbit is related by:
T = 2*p / w
T = 2*p / (2*p / 92.8)
Hence, T = 92.8 min