The correct answer would be C.. its ability to be graphed. I am taking this test too! hope this helps!!! :)
<h3>
Answer:</h3>
C₅H₁₂O(l)+15/2O₂(g)→5CO₂(g)+6H₂O(l)
<h3>
Explanation:</h3>
The balanced chemical equation for the combustion of the hydrocarbon in question is;
C₅H₁₂O(l)+15/2O₂(g)→5CO₂(g)+6H₂O(l)
- A balanced chemical equation is one in which the number of atoms of each element is equal on both sides of the equation.
- Reactant side has; 5 carbon atoms, 12 hydrogen atoms and 16 Oxygen atoms
- Product side has; 5 carbon atoms, 12 hydrogen atoms and 16 Oxygen atoms
- An equation is balanced by putting appropriate coefficients on reactants and products involved in the reaction.
- An equation is balanced so as to obey the law of conservation of mass.
Answer:
300000Pa or 3×10^5 Pa
Explanation:
Since the problem involves only two parameters of volume and pressure, the formula for Boyle's law is suitably used.
Using Boyle's law
P1V1 = P2V2
P1 is the initial pressure = 1.5×10^5Pa
V1 is the initial volume = 0.08m3
P2 is the final pressure (required)
V2 is the final volume = 0.04 m3
From the formula, P2 = P1V1/V2
P2 = 1.5×10^5 × 0.08 ÷ 0.04
= 300000Pa or 3×10^5 Pa.
They drill too deep and find lava
Answer:
Option D. 230 J
Explanation:
We'll begin by calculating the temperature change of the iron. This can be obtained as follow:
Initial temperature (T₁) = 50 °C
Final temperature (T₂) = 75 °C
Change in temperature (ΔT) =?
ΔT = T₂ – T₁
ΔT = 75 – 50
ΔT = 25 °C
Thus, the temperature change of the iron is 25 °C.
Finally, we shall determine the amount of heat energy used. This can be obtained as follow:
Mass (M) = 20 g
Change in temperature (ΔT) = 25 °C
Specific heat capacity (C) = 0.46 J/gºC
Heat (Q) =?
Q = MCΔT
Q = 20 × 0.46 × 25
Q = 230 J
Thus, the amount of heat used was 230 J