1) boiling points increase as molecular weight increase and vice versa. This is due to the increase in van der waals forces between molecules.
2) branching decreases the melting and boiling i.e increase in branching decrease boiling point and melting point. This is due to the fact that there are less point of contact between neighbouring molecules, so molecules are farther apart from each other, which means weaker van der waals(London forces) less energy is required to overcome these force of attraction.
3) In homolytic fission each of the fragment retain one of the bonded electron and radicals are made if the molecule is neutral. In heterolytic fission one fragment gets both bonding electron.
The energy for the heterolytic fission is higher because energy is not only needed to break the covalent bond but also to overcome the force of attraction between oppositely charged ions formed.
Answer:
An increase in entropy
Explanation:
In ice, the molecules are very well ordered because of the H-bonds. As ice melts, the intermolecular forces are broken (requires energy), but the order is interrupted (so entropy increases). Water is more random than ice, so ice spontaneously melts at room temperature.
Just think about this rationally. Melting ice (or anything) will require heat put in (this is called the latent heat of fusion), so you automatically know that the change in enthalpy is going to be positive. In order to make the reaction spontaneous, delta G, the Gibbs free energy has to be negative. So now look at the formula Delta(G) = Delta(H) - T*Delta*(S). If you know that g is negative, and H is positive, then it is only possible if -T*Delta(S) is negative. If that is positive, then Delta(S) has to be positive. So theres your answer :). An increase in entropy
Answer:
The pressure occupied is 1, 8 atm.
Explanation:
We use the Boyle´s Mariotte ´s law: for a given mass of gas at constant temperature, the pressure and volume vary inversely proportionally: P1xV1= P2xV2. The unit of pressure is converted to mmHg in atm.
760 mmHg----1 atm
912 mmHg---x= (912 mmHg x 1 atm)/760 mmHg=1,2 atm
P1xV1= P2xV2
P2=P1xV1/V2= 1,2 atm x 12 L/ 8L= <em>1, 8 atm</em>
1) Formulas:
a) mole fraction of component 1, X1
X1 = number of moles of compoent 1 / total number of moles
b) Molar mass = number grams / number of moles => number of moles = number of grams / molar mass
2) Application
Number of moles of CaI2 = 0.400
Molar mass of water = 18.0 g/mol
Number of moles of water: 850.0 g / 18.0 g/mol = 47.22 mol
Total number of moles = 0.400 + 47.22 =47.62
Molar fraction of CaI2 = 0.400 / 47.62 = 0.00840