<span>Whatever the focus of the experiment is, plus any others factors that might influence the outcome of the experiment. If you are testing a new cancer drug, the experimental group and the control group must both be people with the same type of cancer, and both be a representative distribution of the population, all races, genders, ages, etc. You want the only difference in the two groups to be what you are studying, i.e. the effects of the drug.</span>
Answer:
The rate at which power is generated in the coil is 10.24 Watts
Explanation:
Given;
number of turns of the coil, N = 160
area of the coil, A = 0.2 m²
magnitude of the magnetic field, B = 0.4 T
time for field change = 2 s
resistance of the coil, R = 16 Ω
The induced emf in the coil is calculated as;
emf = dΦ/dt
where;
Φ is magnetic flux = BA
emf = N (BA/dt)
emf = 160 (0.4T x 0.2 m²)/dt
emf = 12.8 V/s
The rate power is generated in the coil is calculated as;
P = V²/ R
P = (12.8²) / 16
P = 10.24 Watts
Therefore, the rate at which power is generated in the coil is 10.24 Watts
Answer:
Gravity
Explanation:
Due to earths gravity, anything that goes into the air returns back to the surface unless it is given the ability to fly.
Hope this helps!
Answer:
cargo planes hold cargo so there hevier
Explanation:
Quantum numbers<span> allow us to both simplify and dig deeper into electron configurations. Electron configurations allow us to identify energy level, subshell, and the number of electrons in those locations. If you choose to go a bit further, you can also add in x,y, or z subscripts to describe the exact orbital of those subshells (for example </span><span>2<span>px</span></span>). Simply put, electron configurations are more focused on location of electrons then anything else.
<span>
Quantum numbers allow us to dig deeper into the electron configurations by allowing us to focus on electrons' quantum nature. This includes such properties as principle energy (size) (n), magnitude of angular momentum (shape) (l), orientation in space (m), and the spinning nature of the electron. In terms of connecting quantum numbers back to electron configurations, n is related to the energy level, l is related to the subshell, m is related to the orbital, and s is due to Pauli Exclusion Principle.</span>