Answer:
A car accelerating to the right
Explanation:
The free-body diagram shows all the forces acting on an object. The length of each arrow is proportional to the magnitude of the force represented by that arrow.
In this free-body diagram, we see that there are 4 forces acting on the object, in 4 different directions. We also see that the two vertical forces are equal so they are balanced, while the force to the rigth is larger than the force to the left: this means that there is a net force to the right, so the object is accelerating to the right.
Therefore, the correct answer is:
A car accelerating to the right
To solve this problem it is necessary to apply the concepts related to the principle of superposition and constructive interference, that is to say everything that refers to an overlap of two or more equal frequency waves, which when interfering create a new pattern of waves of greater intensity (amplitude) whose cusp is the antinode.
Mathematically its definition can be given as:

Where
d = Width of the slit
Angle between the beam and the source
m = Order (any integer) which represent the number of repetition of the spectrum, at this case 1 (maximum respect the wavelength)
Since the point of the theta angle for which the diffraction becomes maximum will be when it is worth one then we have to:


Applying the given relation of frequency, speed and wavelength then we will have that the frequency would be:

Here the velocity is equal to the speed of light and the wavelength to the value previously found.


Therefore the smallest microwave frequency for which only the central maximum occurs is 1.5Ghz
Answer:
Refractive motion is the impact of a light wave that travels from medium to medium in an angle away from normal, where the direction of light varies. Light is refracted when it crosses the air-to-glass interface and moves slower.
Explanation:
Refractive motion is the impact of a light wave that travels from medium to medium in an angle away from normal, where the direction of light varies. Light is refracted when it crosses the air-to-glass interface and moves slower.
Hope this helps.
Answer:
speed =wavelenght x frequency
v=4.5 x 10 to the -7 x 667=0.3 x 10 to the -4 m/s
speed= distance/time
time=distance/speed
t=4 x 10 to the 16/0.3 x 10 to the -4=13.33 x 10 to the 20 seconds
Explanation:
i dont know about this but im willing to help you even im a questioneer....
<h2>last choice:blocks 1,2 and 3</h2>
<h3>-questioneer </h3>
comment down below if you know anything about this and explain me so that i can answer it properly