<span>v is perpendicular to both E and B and has a magnitude E/B</span>
The speed of the wave is mathematically given as
v=2266.66m/s
A long wave with a period of about 15 minutes will travel across the oceans at a speed of approximately v=2266.66m/s
<h3>
Speed of the wave</h3>
Question Parameters:
A long wave with a period of about 15 minutes
Generally the equation for the Wave velocity is mathematically given as
v=\lambda * frequency
Where
f=1/t
Therefore
v=\lambda * frequency
v=\lambda * 1/t
Therefore, with wavelenght of the ocean as 34km
v=34*1000*1/15
v=2266.66m/s
For more information on Speed
brainly.com/question/4931057
Answer:
Time taken = 8.25 second
Explanation:
Given:
Force = 4000 N
Force = ma
4,000 = (1100)(a)
Acceleration = 3.6363 m/s²
v = u + at
0 = 30 + (3.6363)t
Time taken = 8.25 second
A. 
The orbital speed of the clumps of matter around the black hole is equal to the ratio between the circumference of the orbit and the period of revolution:

where we have:
is the orbital speed
r is the orbital radius
is the orbital period
Solving for r, we find the distance of the clumps of matter from the centre of the black hole:

B. 
The gravitational force between the black hole and the clumps of matter provides the centripetal force that keeps the matter in circular motion:

where
m is the mass of the clumps of matter
G is the gravitational constant
M is the mass of the black hole
Solving the formula for M, we find the mass of the black hole:

and considering the value of the solar mass

the mass of the black hole as a multiple of our sun's mass is

C. 
The radius of the event horizon is equal to the Schwarzschild radius of the black hole, which is given by

where M is the mass of the black hole and c is the speed of light.
Substituting numbers into the formula, we find

K=1/2 mv2
M=?
41.6kj convert to joules by multiplying by 1000 so it will be 41,600J because the unit of kinetic energy is in joules.
41,600=1/2(m)(8)
Arrange the equation it will be:
M= 41,600/4 = 10,400
Final answer is:
m= 10,400 kg