Answer:
The 1st and 4th options are correct
I.the oxidized form has a higher affinity for electrons
IV. the greater the tendency for the oxidized form to accept electrons
Explanation:
Half reaction can be described as the oxidation or reduction reaction in a redox reaction.it is In the redox rection there is a change in the oxidation states of Chemical species involved. the oxidized form in the redox has a higher affinity for electrons and the greater the tendency for the oxidized form to accept electrons.
Standard reduction potential which is also referred to as standard cell potential can be described as the potential difference that exist between cathode and anode of the cell. In the standard reduction potential most times the species will be reduced which is usually analysed in a reduction half reaction.
(Standard Hydrogen Electrode) is utilized when determining the Standard reduction or potentials of a chemical specie. this is because of Hydrogen having zero reduction and oxidation potentials, as a result of this a measured potential of any species is compared with that of Hydrogen, the difference helps to know the potential reduction of that particular specie.
An atom of carbon has 4 electrons in its outermost shell, which means that
<span>its ionic charge is 4+ or 4-
</span>Si is in same group as carbon so its also 4+ or 4-
Germanium is 4+.
Sn is also 2+ or 4+
Pb is usually +2
Answer: 1.27 bar
Explanation:
1 atm = 1.01325 bar
1.25 atm = Z (let Z be the unknown value)
To get the value of Z, cross multiply
Z x 1 atm = 1.25 atm x 1.01325 bar
1 atm•Z = 1.2665625 atm•bar
To get the value of Z, divide both sides by 1 atm
1 atm•Z/1 atm = 1.2665625 atm•bar/1atm
Z = 1.2665625 bar
(Round up Z to the nearest hundredth as 1.27 bar)
Thus, 1.25 atm when coverted gives 1.27 bar
<span>the best answer is C i.e is ionoic compound. but all other option sare quite close enough but option B is sure wrong. because A molecular compound does not separate in a solvent.</span>