Answer:
0.0319 m³
Explanation:
Use ideal gas law:
PV = nRT
where P is pressure, V is volume, n is amount of gas, R is the gas constant, and T is temperature.
Since P, n, and R are held constant:
n₁ R / P₁ = n₂ R₂ / P₂
Which means:
V₁ / T₁ = V₂ / T₂
Plugging in:
0.0279 m³ / 280 K = V / 320 K
V = 0.0319 m³
Answer:
The kinetic energy of the particle as it moves through point B is 7.9 J.
Explanation:
The kinetic energy of the particle is:
<u>Where</u>:
K: is the kinetic energy
: is the potential energy
q: is the particle's charge = 0.8 mC
ΔV: is the electric potential = 1.5 kV
Now, the kinetic energy of the particle as it moves through point B is:


Therefore, the kinetic energy of the particle as it moves through point B is 7.9 J.
I hope it helps you!
You need to add a picture or answers!
For astronomical objects, the time period can be calculated using:
T² = (4π²a³)/GM
where T is time in Earth years, a is distance in Astronomical units, M is solar mass (1 for the sun)
Thus,
T² = a³
a = ∛(29.46²)
a = 0.67 AU
1 AU = 1.496 × 10⁸ Km
0.67 * 1.496 × 10⁸ Km
= 1.43 × 10⁹ Km