Answer:
1 C
Explanation:
The intensity of electric current is defined as

where
I is the current
q is the amount of charge transferred
t is the time interval during which the charge is transferred
For the lightning in this problem, we have
is the current
is the time interval
Solving the formula for q, we find the amount of charge transferred:

Answer:
hello your question has some missing values attached below is the complete question with the missing values
answer :
a) 0.083 secs
b) 0.33 secs
c) 3e^-4/3
Explanation:
Given that
g = 32 ft/s^2 , spring constant ( k ) = 2 Ib/ft
initial displacement = 1 ft above equilibrium
mass = weight / g = 4/32 = 1/8
damping force = instanteous velocity hence β = 1
a<u>)Calculate the time at which the mass passes through the equilibrium position.</u>
time mass passes through equilibrium = 1/12 seconds = 0.083
<u>b) Calculate the time at which the mass attains its extreme displacement </u>
time when mass attains extreme displacement = 1/3 seconds = 0.33 secs
<u>c) What is the position of the mass at this instant</u>
position = 3e^-4/3
attached below is the detailed solution to the given problem
A). nuclear
No. There were batteries long long before we learned
how to use nuclear energy. Also, there is no danger of
exposure to radioactivity when you're working with a battery.
b). mechanical
No. A battery has no moving parts.
c). gravitational
No. No matter how high you take a battery in an airplane, or
how far you lower it into a mine-shaft, its characteristics don't
change. In fact, batteries even work on things that are in orbit.
d). chemical
Bingo.
Answer:
E/4
Explanation:
The formula for electric field of a very large (essentially infinitely large) plane of charge is given by:
E = σ/(2ε₀)
Where;
E is the electric field
σ is the surface charge density
ε₀ is the electric constant.
Formula to calculate σ is;
σ = Q/A
Where;
Q is the total charge of the sheet
A is the sheet's area.
We are told the elastic sheet is a square with a side length as d, thus ;
A = d²
So;
σ = Q/d²
Putting Q/d² for σ in the electric field equation to obtain;
E = Q/(2ε₀d²)
Now, we can see that E is inversely proportional to the square of d i.e.
E ∝ 1/d²
The electric field at P has some magnitude E. We now double the side length of the sheet to 2L while keeping the same amount of charge Q distributed over the sheet.
From the relationship of E with d, the magnitude of electric field at P will now have a quarter of its original magnitude which is;
E_new = E/4