1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kari74 [83]
2 years ago
10

Can someone help me with this I don’t understand how to do this

Physics
1 answer:
olga nikolaevna [1]2 years ago
4 0

Answer:

You are doing this wrong. Make sure that if you have 2 rows and on the top it has pounds then on the second bottom row you also have pounds so that they cancel each other out.

Explanation:

You might be interested in
Even when shut down after a period of normal use, a large commercial nuclear reactor transfers thermal energy at the rate of 150
Sever21 [200]

Answer:2.89\approx 2.9^{\circ}C/s

Explanation:

Given

Power\left ( P\right )=150 MW

mass of core\left ( m\right )=1.60\times 10^5 kg

Average specific heat \left ( C\right )=0.3349 KJ/kg^{\circ}C

And rate of increase of temperature =\frac{\mathrm{d}T}{\mathrm{d} t}

Now

P=mc\frac{\mathrm{d}T}{\mathrm{d} t}

150\times 10^6=1.60\times 10^5\times 0.3349\times \frac{\mathrm{d}T}{\mathrm{d} t}

Thus \frac{\mathrm{d}T}{\mathrm{d} t}=[tex]\frac{1.60\times 10^5\times 0.3349}{150\times 10^6}

\frac{\mathrm{d}T}{\mathrm{d} t}=2.89\approx 2.9^{\circ}C/s

6 0
3 years ago
How can meteorologists use the jet stream to predict the weather ?
barxatty [35]
<span>Jet streams act as an invisible director of the atmosphere and are largely responsible for changes in the weather across the globe.
Hope this helps</span>
5 0
3 years ago
Superman does an exhibition run at a track meet. When he runs the 200 m
Ber [7]

Answer:

6.32s

Explanation:

Given parameters:

Length of track and distance covered  = 200m

Acceleration  = 10m/s²

Unknown:

Time taken to cover the track  = ?

Solution:

To solve this problem, we apply one of the motion equations as shown below:

       S  = ut + \frac{1}{2} at²  

S is the distance covered

t is the time taken

a the acceleration

u is the initial velocity

The initial velocity of Superman is 0;

 So;

     S  =  \frac{1}{2} at²  

        200  =  \frac{1}{2} x 10 x t²  

          200  = 5t²  

            t²  = 40

            t  = 6.32s

5 0
2 years ago
When a condenser discharges electricity, the instantaneous rate of change of the voltage is proportional to the voltage in the c
e-lub [12.9K]

Answer:

460.52 s

Explanation:

Since the instantaneous rate of change of the voltage is proportional to the voltage in the condenser, we have that

dV/dt ∝ V

dV/dt = kV

separating the variables, we have

dV/V = kdt

integrating both sides, we have

∫dV/V = ∫kdt

㏑(V/V₀) = kt

V/V₀ = e^{kt}

Since the instantaneous rate of change of the voltage is -0.01 of the voltage dV/dt = -0.01V

Since dV/dt = kV

-0.01V = kV

k = -0.01

So, V/V₀ = e^{-0.01t}

V = V₀e^{-0.01t}

Given that the voltage decreases by 90 %, we have that the remaining voltage (100 % - 90%)V₀ = 10%V₀ = 0.1V₀

So, V = 0.1V₀

Thus

V = V₀e^{-0.01t}

0.1V₀ = V₀e^{-0.01t}

0.1V₀/V₀ = e^{-0.01t}

0.1 = e^{-0.01t}

to find the time, t it takes the voltage to decrease by 90%, we taking natural logarithm of both sides, we have

㏑(0.01) = -0.01t

So, t = ㏑(0.01)/-0.01

t = -4.6052/-0.01

t = 460.52 s

3 0
3 years ago
The Moon requires about 1 month (0.08 year) to orbit Earth. Its distance from us is about 400,000 km (0.0027 AU). Use Kepler’s t
dem82 [27]

Answer:

\frac{M_e}{M_s} = 3.07 \times 10^{-6}

Explanation:

As per Kepler's III law we know that time period of revolution of satellite or planet is given by the formula

T = 2\pi \sqrt{\frac{r^3}{GM}}

now for the time period of moon around the earth we can say

T_1 = 2\pi\sqrt{\frac{r_1^3}{GM_e}}

here we know that

T_1 = 0.08 year

r_1 = 0.0027 AU

M_e = mass of earth

Now if the same formula is used for revolution of Earth around the sun

T_2 = 2\pi\sqrt{\frac{r_2^3}{GM_s}}

here we know that

r_2 = 1 AU

T_2 = 1 year

M_s = mass of Sun

now we have

\frac{T_2}{T_1} = \sqrt{\frac{r_2^3 M_e}{r_1^3 M_s}}

\frac{1}{0.08} = \sqrt{\frac{1 M_e}{(0.0027)^3M_s}}

12.5 = \sqrt{(5.08 \times 10^7)\frac{M_e}{M_s}}

\frac{M_e}{M_s} = 3.07 \times 10^{-6}

4 0
3 years ago
Other questions:
  • Two electrons are separated by 1.70 nm. What is the magnitude of the electric force each electron exerts on the other?
    11·1 answer
  • The protons in a nucleus are approximately 2 ✕ 10^−15 m apart. Consider the case where the protons are a distance d = 1.93 ✕ 10^
    10·2 answers
  • From what height should you drop a ball if you want it to<br> hit the ground in exactly 3 seconds?
    12·1 answer
  • Dolphins communicate using compression waves (longitudinal waves). Some of the sounds dolphins make are outside the range of hum
    13·1 answer
  • A 6,200g man runs at a speed of 125m / s. Find the kinetic energy of the running man.
    6·1 answer
  • WILL GIVE BRAINLEIST!!! PLEAAE HLEPNME
    9·2 answers
  • Franny drew a diagram to compare images produced by concave and convex lenses.
    5·2 answers
  • Answer the following. (a) What is the surface temperature of Betelgeuse, a red giant star in the constellation of Orion, which r
    5·1 answer
  • At maximum height, the velocity is zero.
    13·1 answer
  • A stone of mass 6kg is released from a height of 30m, calculate the velocity before the impact (take gravity=10m/s)
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!