Answer:
A
Explanation:
The toaster was too high so its the increase in eat
Answer:
+1/3
Explanation:
The lens equation states that:

where
f is the focal length
p is the distance of the object from the lens
q is the distance of the image from the lens
For a diverging lens, the focal length is negative: 
and we also know that the object is placed a distance of twice the focal length, so 
So we can find q from the equation above

And the magnification of the image is given by

The time taken by the ballast bag to reach the ground is 2.18 s
The ballast bag at rest with respect to the balloon has the upward velocity (u) of 4.6 m/s , which is the velocity of the balloon. When it is dropped from the balloon, its motion is similar to an object thrown upwards with an initial velocity <em>u </em>and it falls under the acceleration due to gravity<em> g.</em>
Taking the upward direction as positive and the downward direction as negative, the following equation of motion may be used.

The bag makes a net displacement <em>s</em> of 13.4 m downwards, hence

Its initial velocity is

The acceleration due to gravity acts downwards and hence it is negative.

Use the values in the equation of motion and write an equation for t.

Solving the equation for t and taking only the positive value for t,
t=2.18 s
Answer:
yi = Initial height of the helicopter
yf = final height of the helicopter
vyi = component of the initial vertical velocity of the helicopter
g = gravity constant (9.8m/s^2)
yf = yi + vyideltat - 1/2gt^2
0m = 1000m + (15m/2)deltat - 1/2(9.8m/s^2)t^2
-1000m = (15m/s)t - (-4.9m/s^2)t^2
Use the quadratic formula
4.8t^2 - 15t - 1000 = 0
t1 = 15.75s and t2 = -12.65
t2 is rejected, time can't be negative
Thus, it takes 15.75s before the package strikes the ground.