1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
tatuchka [14]
3 years ago
10

Titanium metal requires a photon with a minimum energy of 6.94×10−19J to emit electrons. If titanium is irradiated with light of

233 nm, what is the maximum possible kinetic energy of the emitted electrons?What is the maximum number of electrons that can be freed by a burst of light whose total energy is 2.00 μJ. What is the maximum number of electrons that can be freed by a a burst of light whose total energy is 2.00 μJ.
Physics
1 answer:
butalik [34]3 years ago
4 0

Answer:

a) 1.59(10)^{-19} J

b) 2.34(10)^{12} electrons

Explanation:

The photoelectric effect consists of the emission of electrons (electric current) that occurs when light falls on a metal surface under certain conditions.  

If the light is a stream of photons and each of them has energy, this energy is able to pull an electron out of the crystalline lattice of the metal and communicate, in addition, a kinetic energy.  

<u>This is what Einstein proposed: </u>

Light behaves like a stream of particles called photons with an energy  E:

E=\frac{hc}{\lambda} (1)  

So, the energy E of the incident photon must be equal to the sum of the Work function \Phi of the metal and the kinetic energy K of the photoelectron:  

E=\Phi+K (2)  

Where \Phi=6.94(10)^{-19} J is the minimum amount of energy required to induce the photoemission of electrons from the surface of Titanium metal.

Knowing this, let's begin with the answers:

<h3 /><h3>a)  Maximum possible kinetic energy of the emitted electrons (K)</h3>

From (1) we can know the energy of one photon of 233 nm light:

E=\frac{hc}{\lambda}

Where:

h=6.63(10)^{-34}J.s is the Planck constant  

\lambda=233 (10)^{-9} m is the wavelength

c=3 (10)^{8} m/s is the speed of light

E=\frac{(6.63(10)^{-34}J.s)(3 (10)^{8} m/s)}{3 (10)^{8} m/s} (3)

E=8.53(10)^{-19} J (4) This is the energy of one 233 nm photon

Substituting (4) in (2):

8.53(10)^{-19} J=6.94(10)^{-19} J+K (5)  

Finding K:

K=1.59(10)^{-19} J (5)  This is the maximum possible kinetic energy of the emitted electrons

<h3>b) Maximum number of electrons that can be freed by a burst of light whose total energy is 2 \mu J=2(10)^{-6} J</h3>

Since one photon of 233 nm is able to free at most one electron from the Titanium metal, we can calculate the following relation:

\frac{E_{burst}}{E}

Where E_{burst}=2(10)^{-6} J is the energy of the burst of light

Hence:

\frac{E_{burst}}{E}=\frac{2(10)^{-6} J}{8.53(10)^{-19} J}=2.34(10)^{12} electrons This is the maximum number of electrons that can be freed by the burst of light.

You might be interested in
A metal bar has a volume of 32 cm3. The mass of the bar is 256 g. What is the density of the metal? A. 290 g/cm3 6 B. 8,200 g/cm
lina2011 [118]

Answer:

espera que te sirva

7 0
2 years ago
Use Hooke's Law to determine the work done by the variable force in the spring problem. Nine joules of work is required to stret
natima [27]

Answer:

29.16 J

Explanation:

From Hook's law,

W = 1/2(ke²)..................... Equation 1

Where W = work done, k = Spring constant, e = extension.

Given: W = 9 J, e = 0.5 m.

Substitute into equation 1

9 = 1/2(k×0.5²)

Solve for k

k = 18/0.5²

k = 72 N/m.

The work done required to stretch the spring by additional 0.4 m is

W = 1/2(72)(0.4+0.5)²

W = 36(0.9²)

W = 29.16 J.

6 0
3 years ago
If 20 beats are produced within a single second, which of the following frequencies could possibly be held by two sound waves tr
zhuklara [117]

The correct choice is

D. 22 Hz and 42 Hz.

In fact, the beat frequency is given by the difference between the frequencies of the two waves:

f_B = |f_1 -f_2|

In this problem, the beat frequency is f_B=20 Hz, therefore the only pair of frequencies that gives a difference equal to 20 Hz is

D. 22 Hz and 42 Hz.

4 0
3 years ago
Read 2 more answers
A scientist claimed that fabric A is better able to resist fire than fabric B. Which option describes an experiment that will pr
UNO [17]

Answer:

B. Hold each type of fabric over a candle flame and time how long it takes for the fabric to start to burn.

Explanation:

6 0
3 years ago
You will now examine the relationship between the number of field lines through a surface and the tangle betwcen A and E) angle
nikitadnepr [17]

Answer:

a. cosθ b. E.A

Explanation:

a.The electric flux, Φ passing through a given area is directly proportional to the number of electric field , E, the area it passes through A and the cosine of the angle between E and A. So, if we have a surface, S of surface area A and an area vector dA normal to the surface S and electric field lines of field strength E passing through it, the component of the electric field in the direction of the area vector produces the electric flux through the area. If θ the angle between the electric field E and the area vector dA is zero ,that is θ = 0, the flux through the area is maximum. If  θ = 90 (perpendicular) the flux is zero. If θ = 180 the flux is negative. Also, as A or E increase or decrease, the electric flux increases or decreases respectively. From our trigonometric functions, we know that 0 ≤ cos θ ≤ 1 for  90 ≤ θ ≤ 0 and -1 ≤ cos θ ≤ 0 for 180 ≤ θ ≤ 90. Since these satisfy the limiting conditions for the values of our electric flux, then cos θ is the required trigonometric function. In the attachment, there is a graph which shows the relationship between electric flux and the angle between the electric field lines and the area. It is a cosine function  

b. From above, we have established that our electric flux, Ф = EAcosθ. Since this is the expression for the dot product of two vectors E and A where E is the number of electric field lines passing through the surface and A is the area of the surface and θ the angle between them, we write the electric flux as Ф = E.A  

4 0
3 years ago
Other questions:
  • If a 4.5 kg object is dropped from a height of 6.0 m, what will be its velocity when it is halfway toward the ground? (Use g = 9
    14·2 answers
  • A block of mass of 10kg is being pushed on a tabletop downwards by a force of 200N. There is no acceleration in the problem. Cal
    11·1 answer
  • Help with this. <br><br><br><br><br><br> ....
    15·1 answer
  • Which type of thermal energy transfer warms your hand when you hold it near a glass of hot water?
    7·1 answer
  • Which region of the ear gathers information and funnels sound
    7·2 answers
  • The amount of kinetic energy a moving object has depand on its
    13·2 answers
  • Wegut.
    6·1 answer
  • HELP PLS HURRY !!!!!!!!!
    10·1 answer
  • A common design for a spotlight uses a lens and a mirror, combined with a gas-discharge lamp, to project a powerful parallel bea
    9·1 answer
  • A cog system on the beginning segment of a roller coaster needs to get 29 occupied cars up a 120-m vertical rise over a time int
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!